

Hands-On MLOps on Azure

Automate, secure, and scale ML workflows with the Azure ML
CLI, GitHub, and LLMOps

Banibrata De

Hands-On MLOps on Azure
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Kartikey Pandey

Relationship Lead: Prachi Rana

Project Manager: Sonam Pandey

Content Engineer: Apramit Bhattacharya

Technical Editor: Simran Ali

Copy Editor: Safis Editing

Indexer: Hemangini Bari

Proofreader: Apramit Bhattacharya

Production Designer: Ganesh Bhadwalkar

Growth Lead: Amit Ramadas

First published: August 2025

Production reference: 1210725

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83620-033-8

www.packtpub.com

www.packtpub.com

To my mother, Arati De, and to the memory of my father, Narahari De—for their sacrifices and for

exemplifying the power of determination.

To my wife, Anuja, for being my loving partner throughout our shared journey of life.

To my sons, Rishik and Adwik, for sharing in my joy of creativity and unbounded energy.

– Banibrata De

Contributors

About the author
Banibrata De is a lead software engineer at Microsoft. Over the years, he has contributed in

various capacities, including application performance engineering, backend architecture, and

frontend development. He has been part of the Azure Machine Learning CLI team since its

inception and played a key role in shaping the developer experience. He has also been an active

contributor to the Azure ML SDK v2 open source project since its early days.

Currently, Banibrata works on AI Foundry, Microsoft’s flagship platform for enabling large

language models and agentic workflows. Prior to Microsoft, he worked at Tata Consultancy

Services and PricewaterhouseCoopers, helping a wide range of clients solve complex engineering

challenges across industries.

He holds a Bachelor of Engineering degree from Jadavpur University, Kolkata, India.

I want to thank the people who have been close to me and supported me, especially my wife, Anuja.

About the reviewers
Tapas Roy is a data leader passionate about unlocking the potential of data to drive strategic

decisions and growth. With a rich background in data platforms, BI, and AI, he has led cross-

functional teams globally, driving success across healthcare, financial services, retail, and

consumer products. He fosters high-performance, collaborative cultures that tackle complex

challenges while enabling continuous learning. An entrepreneur at heart, he is also passionate

about blockchain innovation and future possibilities at the intersection of tech and business.

Sriram Panyam is a seasoned engineering leader with deep expertise in distributed systems,

cloud platforms, and AI. He has held key roles at Google, LinkedIn, and Amazon, where he

shaped large-scale systems powering global platforms. Sriram has led initiatives in systems

architecture, cloud optimization, and data infrastructure while developing engineering talent

and high-performing teams. His strengths include microservices, performance tuning, scalable

data processing, and cloud-native design. He has driven major technical transformations and set

best practices for resilient infrastructure, earning recognition as a trusted advisor and respected

voice in the engineering community.

Nicola Farquharson has over 20 years of experience in networking infrastructure and

Microsoft technologies, including AI, MS-SQL, Power BI, Data Science, Dynamics 365, Machine

Learning, Azure, and Azure DevOps. She is the author of Exam Ref DP-900 Microsoft Azure Data

Fundamentals, 2nd Edition, and has trained hundreds as a Microsoft Certified Trainer and part-

time professor. Her background spans roles in cybersecurity and infrastructure analysis, with a

focus on risk management and data governance. She brings a multidisciplinary perspective to

architecting secure, scalable, and intelligent cloud solutions.

Table of Contents

Preface � xvii

Part 1: Foundations of MLOps � 1

Chapter 1: Understanding DevOps to MLOps � 3

From DevOps to MLOps: Bridging the operational gap �� 4

DevOps: A foundation for MLOps • 4

Revolutionizing software development • 5

The DevOps–MLOps connection • 6

Key DevOps concepts in MLOps • 7

CI/CD for the ML lifecycle • 7

The importance of MLOps in the AI era • 8

Principles and practices of MLOps ��� 10

Data management in MLOps • 10

Experiment tracking • 10

Model deployment challenges • 11

Security and compliance in MLOps • 11

Model performance and maintenance • 12

MLOps tools and technologies • 13

Building an MLOps team • 13

Faster experimentation and development of models • 14

Deployment of models into production • 16

Table of Contentsviii

Quality assurance and end-to-end lineage tracking ��� 19

MLOps toolkits: Streamlining the ML lifecycle with ML CLIs �� 23

Types of ML CLIs • 23

Choosing the right ML CLI • 23

Common management tasks with ML CLIs • 24

Exploring ML CLIs for different cloud providers • 25

Azure ML CLI v2 • 25

AWS CLI with SageMaker • 26

GCP gcloud CLI • 27

Benefits of organized structure • 29

Summary ��� 29

Chapter 2: Training and Experimentation � 31

Key stages in building an ML model ��� 32

AML workspace �� 33

Key features of an AML workspace • 33

Key components of a workspace • 34

Managing workspace resources • 35

AML CLI ��� 36

Setting up a virtual environment • 36

Basic structure and usage of the AML CLI • 38

Workspace: A closer look • 39

Jobs and experiments in AML ��� 41

Jobs • 41

Experiments • 41

Jobs and experiments: Why they matter • 42

Data preparation �� 43

Steps in data preparation • 43

What are the benefits of proper data preparation? • 44

Registering data in the AML workspace • 45

How can data be registered? • 45

Table of Contents ix

Setting up an experiment • 46

Creating a simple experiment by running a job • 46

Choosing the model/algorithm • 50

Defining the evaluation criteria • 50

Collecting metrics and artifacts • 50

Comparing models • 51

Selecting the best model • 51

Tracking and comparing model experiments in ML • 52

Tools for tracking • 52

Setting up MLflow tracking with AzureML CLI v2 • 53

Comparing jobs in an experiment • 53

Register the best model based on metrics • 56

Optimizing models • 56

Hyperparameter tuning • 57

Tuning techniques • 57

Sweep jobs • 57

Example using the CLI • 58

Evaluation and iteration • 60

Summary ��� 61

Tools documentation ��� 61

Part 2: Implementing MLOps � 63

Chapter 3: Reproducible and Reusable ML � 65

Defining repeatable and reusable steps for data preparation, training, and scoring ���������� 66

Learning about components and pipelines in AML �� 69

Components • 69

Pipelines • 73

Understanding ML environments • 76

Tracking and reproducing software dependencies in projects ��� 77

Table of Contentsx

Hands-on example – Building an ML pipeline with AML CLI, Git, and GitHub Actions ����� 80

Summary ��� 86

Join the CloudPro Newsletter with 44000+ Subscribers �� 86

Chapter 4: Model Management (Registration and Packaging) � 87

Model metadata �� 88

Metadata management using Azure Machine Learning (AML) • 88

Model registration ��� 89

AML registry • 90

Model format ��� 92

Standardizing the model format (MLflow) • 92

Custom model formats • 92

Challenges and considerations • 93

Choosing the right format • 93

Datastores �� 94

Registering models in action �� 94

Examples of model registration with the AML CLI • 95

Model packaging • 97

Commands for model packaging • 97

Properties of a package operation • 98

Creating a package • 99

Summary �� 101

Chapter 5: Model Deployment: Batch Scoring and
Real-Time Web Services � 103

Model deployment options �� 104

Real-time inference • 104

Implementation in AML • 105

Deployment infrastructure • 105

Batch inference/scoring • 107

Implementation in AML • 108

Deployment infrastructure • 109

Table of Contents xi

Online inferencing ��� 111

Preparing the model • 111

Registering the model • 112

Scoring script • 112

Configuring the environment • 113

Deployment • 114

Inference on deployment • 115

Batch inferencing �� 116

Scoring script • 116

Configuring the environment for online deployment • 119

Deployment configuration • 120

Configuring the environment for batch deployment • 120

Additional concepts related to batch deployment • 122

Summary �� 124

Chapter 6: Capturing and Securing Governance Data for MLOps � 125

Key governance focus areas ��� 126

Ensuring model integrity • 127

Compliance requirements in ML • 127

Lineage • 128

Tools and techniques for lineage tracking in AML • 128

Best practices for logging and documenting lineage • 129

Implementing governance across the AML lifecycle �� 130

Securing data and lineage information • 130

Governance strategies for compliance and quality assurance ��� 131

Operationalizing governance in ML • 132

Ethical considerations �� 133

Bias detection and mitigation • 133

Bias detection • 133

Bias mitigation • 134

Table of Contentsxii

Comprehensive governance in action ��� 134

Putting the practice together • 138

Summary ��� 140

Chapter 7: Monitoring the ML Model � 141

The purpose of monitoring ��� 142

Monitoring: Model performance versus infrastructure ��� 143

Infrastructure usage monitoring • 143

Learning about DataCollector �� 144

Setting up data collection ��� 145

Setting up monitoring with collected data • 147

Key monitoring signals in AML • 153

Infrastructure metric monitoring ��� 155

Endpoint metrics • 155

Deployment metrics • 156

Summary �� 157

Join the CloudPro Newsletter with 44000+ Subscribers �� 158

Chapter 8: Notification and Alerting in MLOps � 159

Understanding alerts and notifications in the MLOps context ��� 160

Exploring AML platform logs ��� 160

Creating an alert ��� 162

Extending alerts to multiple workspaces ��� 166

Introduction to Log Analytics workspaces • 166

Configuring centralized collection • 167

Advanced alerting ��� 169

Integrating alerts with incident management • 170

Best practices for alert management �� 170

Setting appropriate alert thresholds • 171

Avoiding alert fatigue • 171

Example: Refining model deployment failure alerts • 172

Summary �� 173

Table of Contents xiii

Part 3: MLOps and Beyond � 175

Chapter 9: Automating the ML Lifecycle with
ML Pipelines and GitHub Workflows � 177

Implementing end-to-end AML pipelines �� 178

AML pipeline • 178

Expanding beyond Azure: GitHub Actions for CI/CD • 181

Real-world scenario: Multi-cloud CI/CD for ML workflows �� 185

Challenges and best practices ��� 192

Common challenges in multi-cloud ML pipelines • 192

Best practices • 192

Summary �� 193

Chapter 10: Using Models in Real-world Applications � 195

Recapping fundamental concepts ��� 195

Case study 1: Demand forecasting on Azure �� 197

Business context and requirements • 197

Implementation architecture • 198

Data pipeline • 198

Model development pipeline • 198

CI/CD pipeline • 199

Deployment and serving • 199

Monitoring and logging • 200

Feedback loop • 201

Platform-specific solution • 201

Challenges and solutions • 202

Regional time-series forecasting • 202

Scalability and performance • 202

Case study 2: Handwriting assistance for children on Google Cloud Platform ����������������� 203

Business context and requirements • 203

Table of Contentsxiv

Implementation architecture • 204

Data pipeline • 204

Model development pipeline • 204

CI/CD pipeline • 205

Deployment and serving • 206

Monitoring and logging • 206

Feedback loop • 207

Challenges and solutions • 207

Variability in handwriting styles • 207

Real-time inference performance • 208

Case study 3: Real-time precision delivery on Amazon Web Services ������������������������������ 208

Business context and requirements • 209

Implementation architecture • 209

Data pipeline • 209

Model development pipeline • 210

CI/CD pipeline • 211

Deployment and serving • 211

Monitoring and logging • 212

Feedback loop • 212

Challenges and solutions • 212

Real-time processing at scale • 213

Complex route optimization • 213

Summary �� 214

Chapter 11: Exploring Next-Gen MLOps � 217

Introducing LLMs: New concepts and key differences from MLOps ��������������������������������� 218

Components of LLM solution development • 219

Development process • 220

Readiness for deployment • 223

Challenges and risks in LLMOps �� 223

Responsible AI • 224

Table of Contents xv

Azure RAI • 224

Deployment • 226

Alerting and monitoring • 227

Benefits of and trends in LLM developments ��� 228

Emerging trends transforming LLMOps • 229

Practical example: Implementing LLMOps with Azure AI ��� 231

Background • 231

Solution development • 231

Prompt engineering and model customization • 232

RAI implementation • 232

Deployment and monitoring • 232

Results and impact • 233

Future developments • 233

Summary ��� 233

Stay Sharp in Cloud and DevOps – Join 44,000+ Subscribers of CloudPro ����������������������� 235

Other Books You May Enjoy � 239

Index � 243

Preface

Machine Learning Operations (MLOps) is an emerging discipline that brings together machine

learning, DevOps, and data engineering to streamline and automate the end-to-end lifecycle

of machine learning models—from development and experimentation to deployment and

monitoring. This book introduces MLOps in a practical, scenario-driven way, with real-world

examples using Azure ML, GitHub Actions, and cloud-native services. It aims to help you

operationalize machine learning models efficiently and reliably in enterprise environments. The

book concludes by exploring the latest trends in LLMOps—applying MLOps to large language

models such as GPTs.

Who this book is for
This book is written for DevOps engineers, cloud engineers, SREs, and technical leads who are

involved in deploying and managing machine learning systems. It also serves project managers

and decision-makers looking to understand MLOps processes and best practices. You are expected

to have a working knowledge of the following:

•	 Machine learning concepts (model training, evaluation, data preparation)

•	 Cloud computing (Azure, AWS, or GCP)

•	 Software development tools such as version control, testing, and CI/CD

•	 Python programming

A background in DevOps is especially helpful, as this book builds on DevOps principles and

extends them to ML workflows.

What this book covers
Chapter 1, Understanding DevOps to MLOps, introduces DevOps fundamentals and transitions

into MLOps practices such as faster experimentation, deployment, and model governance across

cloud platforms.

Prefacexviii

Chapter 2, Training and Experimentation, guides you through creating ML workspaces, tracking

experiments, and optimizing models using hyperparameter tuning.

Chapter 3, Reproducible and Reusable ML, focuses on building repeatable ML pipelines and managing

environments to ensure consistent and efficient ML development.

Chapter 4, Model Management (Registration and Packaging), covers model registration, packaging,

versioning, and deployment strategies to support the full model lifecycle.

Chapter 5, Model Deployment: Batch Scoring and Real-Time Web Services, explores how to implement

scoring jobs for batch processing and real-time prediction using scalable cloud services.

Chapter 6, Capturing and Securing Governance Data for MLOps, delves into governance, lineage

tracking, compliance, and security of ML workflows.

Chapter 7, Monitoring the ML Model, shows how to track model performance, detect data drift,

monitor resource usage, and conduct controlled rollouts.

Chapter 8, Notification and Alerting in MLOps, teaches you how to use event-driven alerts (e.g., via

Event Grid) to detect anomalies and trigger automated responses.

Chapter 9, Automating the ML Lifecycle with ML Pipelines and GitHub Workflows, details how to

orchestrate model deployment using GitHub Actions and infrastructure-as-code practices.

Chapter 10, Using Models in Real-world Applications, presents three cloud-based case studies (Azure,

GCP, AWS) to demonstrate MLOps in practical industry settings.

Chapter 11, Exploring Next-Gen MLOps, introduces LLMOps, showing how to work with large

language models (LLMs), Retrieval-Augmented Generation (RAG), and responsible AI practices.

To get the most out of this book
The following table outlines the key software and tools covered in this book, along with the

recommended operating systems to ensure optimal compatibility and performance.

Software/hardware covered in the book Operating system requirements

Azure ML CLI v2 (latest version) Windows, macOS, or Linux

The installation instructions are already part of the book.

Preface xix

If you are using the digital version of this book, we advise you to type the code yourself. Doing

so will help you avoid any potential errors related to the copying and pasting of code.

After reading this book, you will be equipped to design reproducible ML pipelines that automate

data preparation, training, and scoring; register, package, and deploy models using industry‑grade

practices; and implement governance, monitoring, and alerting to ensure transparency and

compliance. You’ll learn how to orchestrate the ML lifecycle using Azure ML CLI v2 and GitHub

Actions with an infrastructure-as-code approach, apply MLOps principles across real-world cloud

scenarios, and take your first steps into LLMOps—operationalizing large language models with

a focus on safety, ethics, and performance.

The author acknowledges the use of cutting-edge AI with the sole aim of enhancing the language

and clarity within the book, thereby ensuring a smooth reading experience for readers. It’s

important to note that the content itself has been crafted by the author and edited by a professional

publishing team.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “In this

example, job.yaml contains the schema of the job. Azure ML CLI v2 supports extensive use of

YAML files to specify complex schemas for different command-line inputs.”

A block of code is set as follows:

name: mygreat_registry

location: eastus

description: "My Azure ML Registry"

tags:

"Awesome : Great"

"ML is" : "Fun"

Any command-line input or output is written as follows:

az ml job create --file pipeline.yml

az ml schedule create --file pipeline.yml

Prefacexx

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Notice the rich metadata

in Figure 4.4, along with the Created by job section.”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@

packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you would report this

to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and

you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Tips or important notes

Appear like this.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
www.packtpub.com/support/errata
copyright@packt.com
authors.packtpub.com

Preface xxi

Share your thoughts
Once you’ve read Hands-On MLOps on Azure, we’d love to hear your thoughts! Please click here

to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://www.packtpub.com/
https://www.packtpub.com/

Prefacexxii

Stay Sharp in Cloud and DevOps – Join 44,000+
Subscribers of CloudPro
CloudPro is a weekly newsletter for cloud professionals who want to stay current on the fast-evolv-

ing world of cloud computing, DevOps, and infrastructure engineering.

Every issue delivers focused, high-signal content on topics like:

•	 AWS, GCP & multi-cloud architecture

•	 Containers, Kubernetes & orchestration

•	 Infrastructure as Code (IaC) with Terraform, Pulumi, etc.

•	 Platform engineering & automation workflows

•	 Observability, performance tuning, and reliability best practices

Whether you’re a cloud engineer, SRE, DevOps practitioner, or platform lead, CloudPro helps you

stay on top of what matters, without the noise.

Scan the QR code to join for free and get weekly insights straight to your inbox:

https://packt.link/cloudpro

https://packt.link/cloudpro

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836200338

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836200338

Part 1
Foundations of MLOps

This part lays the groundwork for your MLOps journey, guiding you through the transition from

DevOps to MLOps while establishing core principles, practices, and workflows. You will learn how

to manage machine learning (ML) workspaces, prepare and track data, design experiments, and

implement training pipelines using cloud-native tools. By focusing on reproducibility, reusability,

and automation, this section equips you with the practical knowledge needed to efficiently

develop and manage ML models, ensuring that your solutions are robust, scalable, and ready

for production.

This part has the following chapters:

•	 Chapter 1, Understanding DevOps to MLOps

•	 Chapter 2, Training and Experimentation

1
Understanding DevOps to
MLOps

In the dynamic intersection of technology and innovation, the disciplines of DevOps and Machine

Learning Operations (MLOps), represent transformative approaches to software and ML lifecycle

management, respectively. This chapter explores how DevOps, a set of practices for faster software

development, lays the groundwork for MLOps. MLOps is a similar approach specifically designed

for the unique challenges of building and managing ML models.

Through a detailed exploration, we will uncover how the core principles of DevOps are not only

applicable but essential to the effective management of ML processes. Because ML models can

change their output for the same data, MLOps uses continuous monitoring, version control, and

testing to keep them working well in real-world use.

As we progress, the chapter will break down the integration of DevOps into MLOps, highlighting

key practices, such as infrastructure as code and continuous delivery, that have been adapted

to meet the needs of ML workflows. Each section is designed to build upon the last, weaving

a comprehensive narrative that not only educates but also empowers you to implement these

practices in your own ML projects.

This journey through the foundational elements of MLOps will equip you with the knowledge

to enhance efficiency, improve model reliability, and foster a culture of innovation within your

teams. As we explore the crucial role of MLOps in the AI era, you will gain insights into managing

the complexities of ML, ultimately leading to a mastery of technologies that drive the future of

intelligent systems.

Understanding DevOps to MLOps4

This chapter will cover the following topics:

•	 Understanding DevOps to MLOps

•	 Principles and practices of MLOps

•	 Quality assurance and end-to-end lineage tracking

•	 MLOps toolkits

Focus on the journey, not the destination (yet).

As this is an introductory chapter, we’ll be laying the groundwork for MLOps without diving deep

into every technical detail. Concepts and acronyms related to MLOps will be thoroughly explored

in dedicated chapters later in the book.

Our primary focus here is understanding the natural progression from DevOps practices to MLOps.

We’ll establish the core principles and their application to the unique world of ML models.

By the end of this chapter, you’ll have a foundational understanding of MLOps and its role in the

AI era. This will empower you to embark on your own MLOps journey, and future chapters will

equip you with the specific tools and techniques to navigate the complexities of ML workflows.

From DevOps to MLOps: Bridging the operational
gap
The software development landscape has undergone a significant transformation. Traditional

workflows, often characterized by siloed teams and manual processes, have given way to more

collaborative and automated approaches. At the forefront of this revolution lies DevOps, a set of

practices that emphasize collaboration, automation, and continuous improvement throughout

the software development lifecycle.

DevOps: A foundation for MLOps
DevOps bridges development and operations through shared responsibility and automation. Its

principles of continuous integration, delivery, and infrastructure as code provide the foundation

for MLOps in ML.

Chapter 1 5

The following are the core principles of DevOps:

•	 Continuous Integration (CI): Frequent merging of code changes from developers into

a central repository. This allows for early detection and resolution of integration issues.

•	 Continuous Delivery (CD): Automating the delivery pipeline to reliably and quickly deploy

software updates to production environments.

•	 Infrastructure as Code (IaC): Managing and provisioning infrastructure through machine-

readable definition files instead of manual configuration. This ensures consistency and

reduces errors.

•	 Microservices: Building applications as a suite of small, independent services that

communicate with each other. This improves modularity, scalability, and maintainability.

Along with these, the immediate effect of following DevOps principles revolutionized the

development process which further paved the way for MLOps.

Revolutionizing software development
DevOps has revolutionized software development through the following:

•	 Increased speed and efficiency: Automating tasks and streamlining workflows

significantly reduces development and deployment times

•	 Improved quality and reliability: Early detection of issues through CI and frequent

deployments lead to more reliable software

•	 Enhanced collaboration: DevOps fosters a culture of collaboration between developers

and operations, breaking down silos and improving communication

•	 Greater scalability: It adapts to microservices, which allows for easier scaling of

applications to meet growing demands

By focusing on automation, collaboration, and continuous improvement, DevOps has not only

revolutionized software development but also laid the groundwork for the application of similar

principles in the complex world of ML. This paves the way for MLOps, a specialized set of practices

designed to address the unique challenges of building, deploying, and managing ML models.

Understanding DevOps to MLOps6

The following diagram illustrates the core principles and impact of DevOps, showcasing how it

revolutionizes software development through its emphasis on collaboration, automation, and

continuous improvement.

Figure 1.1 – Core principles and impact of DevOps

In summary, DevOps has not only transformed the landscape of software development but has

also set the stage for a new paradigm in managing complex ML workflows. By emphasizing

automation, collaboration, and continuous improvement, DevOps offers critical lessons that are

directly applicable to the burgeoning field of MLOps.

The DevOps–MLOps connection
MLOps emerges as a specialized extension of the foundational DevOps practices, tailor-made to

address the unique challenges of ML systems. Building upon the solid framework provided by

DevOps, MLOps not only borrows core principles such as CI, CD, and IaC but also extends them to

tackle the unique complexities of ML, as will be described in the Principles and practices of MLOps

section. This section explores how MLOps adapts and extends the DevOps principles, described

in the previous section, to ensure that ML models are developed, deployed, and maintained with

precision in dynamic environments.

Chapter 1 7

Unlike traditional software, ML models are non-deterministic. This means they can produce

different outputs for the same input data depending on the training data they were exposed

to. This non-deterministic nature necessitates ongoing monitoring of model performance in

production to ensure they remain accurate and effective. Additionally, as data evolves over time,

models may experience concept drift, where their performance degrades due to a mismatch

between the training data and real-world data. This necessitates retraining and updating models

to maintain optimal performance.

Another challenge specific to MLOps is model versioning and reproducibility, both of which

will be explained in the Key DevOps concepts in MLOps section. Version control for code ensures

developers can recreate past versions of software. However, in MLOps, both the code and the

data used to train a model need to be versioned for true reproducibility. This means managing

and tracking changes not only to the code but also to the training data and model parameters.

While these complexities add an extra layer to the MLOps process, the core DevOps principles

remain a strong foundation. By adapting them to the world of ML, MLOps helps streamline the

ML lifecycle, from development and deployment to monitoring and maintenance.

As we have seen, the integration of DevOps principles into the ML lifecycle introduces a framework

that accommodates the non-deterministic nature of ML models and the evolving data they learn

from. This framework is crucial for the sustainable and efficient operation of ML systems in

production environments.

Key DevOps concepts in MLOps
With a clear understanding of how DevOps principles underpin MLOps, we can now delve deeper

into specific DevOps practices that are crucial for MLOps. This section will focus on CI, CD, and

IaC, explaining how these practices are adapted to meet the needs of ML workflows.

CI/CD for the ML lifecycle
MLOps leverages core DevOps principles to streamline the ML lifecycle. Let’s explore how CI/CD

and IaC play a crucial role:

•	 CI: CI in MLOps automates and manages key tasks that:

•	 Automates tasks such as code linting, unit testing, and data validation to ensure

code quality and catch issues early

•	 Integrates changes from data scientists/ML engineers into a central repository,

facilitating collaboration and version control

Understanding DevOps to MLOps8

•	 Automates data preprocessing and feature engineering steps as part of the CI

pipeline, ensuring consistency and reducing errors. We will learn more about

these in Chapter 2.

•	 CD: CD in MLOps enables processes that:

•	 Enables automated model training and retraining based on new data or code

changes

•	 Streamlines model deployment to various environments (testing, staging,

production) for validation and monitoring

•	 Facilitates A/B testing of different models to compare performance and select the

best candidate for deployment. We will look at this in greater detail in Chapter 2.

•	 IaC for ML infrastructure: IaC for ML infrastructure defines practices that:

•	 Defines infrastructure components such as data pipelines, compute resources

(CPUs and GPUs), and deployment environments in machine-readable code (for

example, YAML)

•	 Enables consistent and automated provisioning of infrastructure across different

environments, reducing configuration errors and manual setup time

•	 Allows for easy scaling of resources as model training requirements or data volumes

grow

•	 Facilitates disaster recovery by enabling quick infrastructure rebuild based on

IaC definitions.

By applying these CI/CD and IaC practices, MLOps ensures a reliable, efficient, and scalable ML

development process.

By adapting CI/CD and IaC to the ML domain, MLOps not only enhances the efficiency and

reliability of ML systems but also ensures that these systems can scale and evolve in response

to new data and computational demands. These adaptations are critical for maintaining the

robustness of ML operations.

The importance of MLOps in the AI era
Think of MLOps as your AI project’s safety net and accelerator. Just as DevOps transformed

software delivery, MLOps is revolutionizing how we build and maintain AI systems. Without

MLOps, organizations often face “model disasters”—from degraded performance going unnoticed

for months to the inability to reproduce successful models when needed.

Chapter 1 9

MLOps solves these challenges through automation and standardization. It transforms manual,

error-prone processes into streamlined workflows that automatically validate data, test models,

and monitor performance. This means faster deployment of models, early detection of issues, and

the ability to scale AI projects confidently. Most importantly, when problems occur (and they will),

MLOps provides the tools to quickly identify root causes and roll back to stable versions—turning

potential crises into minor hiccups while maintaining compliance and governance standards.

The following figure is a mind map for the MLOps process in a nutshell:

Figure 1.2 – MLOps process mind map

The mind map provides a high-level overview of the MLOps process, highlighting the key areas

involved in managing ML workflows. Let’s dive deeper into these areas to understand the

principles and practices that make MLOps essential in addressing the unique challenges of ML.

Understanding DevOps to MLOps10

Principles and practices of MLOps
This section dives deeper into the specific practices employed in MLOps to address the unique

challenges of ML. Here’s a breakdown of key areas in the following sections.

Data management in MLOps
Effective data management is a cornerstone of successful MLOps practices. By implementing

robust systems for data versioning, quality assurance, and feature engineering, we can ensure

that our data is reliable and ready for advanced analytical processes. The following key practices

are essential for managing data in MLOps:

•	 Data versioning: Tracks changes to data used in training, ensuring that models can be

reproduced with the same data for comparison or troubleshooting.

•	 Data quality: Ensures that data used for training is accurate, complete, and free from

biases. Techniques include data validation, cleaning, and anomaly detection.

•	 Feature engineering: The process of transforming raw data into meaningful features for

model training. MLOps practices involve versioning feature engineering pipelines and

tracking their impact on model performance.

With robust systems in place for managing data versioning, quality, and feature engineering,

we ensure that our foundational datasets are primed for advanced analytical processes. These

management practices not only safeguard the integrity of data but also set the stage for effective

experimentation.

Experiment tracking
Moving from the structured management of data, we now turn our focus toward experiment

tracking, a critical component that builds upon our curated data to optimize and refine ML models.

Experiment tracking involves systematically recording and comparing different ML experiments,

including variations in model architectures, hyperparameters, and training datasets. This practice

is essential for learning from past experiments and identifying the best-performing models. To

fully grasp the significance of experiment tracking in MLOps, it’s essential to understand its core

aspects, including its importance, the tools used, and the benefits it brings to ML workflows:

•	 Importance: It tracks and compares different ML experiments, including model

architectures, hyperparameters, and training data. This facilitates learning from past

experiments and identifying the best-performing models.

Chapter 1 11

•	 Tools: Several tools (such as MLflow, Neptune, and Weights & Biases) help manage

experiment metadata, code, and model artifacts for easy comparison and analysis.

•	 Benefits: It enables collaboration among data scientists by sharing and reproducing

experiments, leading to faster development cycles and improved model performance.

Having established a rigorous system for tracking and comparing ML experiments, we’ve set

a benchmark for model development and iterative refinement. This framework is essential for

identifying the most promising models ready for the next critical phase—deployment.

Model deployment challenges
As we transition from the laboratory settings of model training to the real-world applications

of model deployment, new challenges emerge. This section delves into the complexities of

deploying ML models, ensuring they perform reliably in production environments and interact

seamlessly with existing systems. Successfully deploying ML models requires addressing several

key challenges to ensure compatibility, performance, and interpretability:

•	 Compatibility: Ensuring models trained in specific environments are compatible with

production infrastructure and can interact with other systems seamlessly.

•	 Performance: Monitoring model performance in production to identify degradation

(concept drift) and ensure models meet latency and resource constraints.

•	 Interpretability: Crucial in ML to ensure that stakeholders can understand and trust the

decisions made by AI systems. This becomes especially important in regulated industries

such as healthcare and finance, where knowing the “why” behind a decision can be as

critical as the decision itself.

With our models strategically deployed to handle real-world data and demands, the imperative

shifts toward safeguarding these systems. The next frontier is ensuring that our deployment

strategies not only perform efficiently but also comply with stringent security standards and

regulatory requirements.

Security and compliance in MLOps
Security and compliance are paramount in the lifecycle of any ML model, particularly when

handling sensitive data. This section will outline the essential practices for embedding robust

security measures and ensuring regulatory compliance, from GDPR to CCPA, safeguarding your

models and the data they process.

Understanding DevOps to MLOps12

Incorporating comprehensive security and compliance measures involves several critical practices:

•	 Data privacy: Protecting sensitive data used in training models is critical. MLOps practices

involve data anonymization, encryption, and access control mechanisms.

•	 Encryption: Encrypting data at rest and in transit ensures its confidentiality and prevents

unauthorized access.

•	 Regulations: Following regulations such as GDPR and CCPA (which govern data privacy

and security) is crucial for businesses using ML models.

After fortifying our models against security breaches and ensuring compliance with international

standards, our attention must now turn to the ongoing performance and maintenance of these

systems. It’s crucial that they not only start strong but also sustain their accuracy and reliability

over time.

Model performance and maintenance
Maintaining optimal model performance in production requires vigilant monitoring and periodic

updates. This next section covers the strategies for managing model performance and the

techniques for continuous performance evaluation, ensuring that our models remain effective

as new data and scenarios arise. Effective model performance and maintenance involve several

key strategies:

•	 Model drift: The phenomenon where a model’s performance degrades over time due

to changes in the underlying data distribution (data drift), or changes in how the input

data relates to the target variable (concept drift). It is managed by monitoring for drift

indicators and retraining models with updated data to maintain accuracy.

•	 Monitoring: Continuously monitoring model performance in production to detect drift

and ensure model effectiveness.

•	 Retraining: Periodically retraining models with new data to mitigate concept drift and

maintain optimal performance.

Through vigilant monitoring and periodic retraining, we can maintain the robustness of our

models against the inevitable changes in data over time. Ensuring continuous model performance

and mitigating concept drift are critical to the long-term success of any ML system.

Chapter 1 13

MLOps tools and technologies
While maintaining model performance forms the backbone of operational success, the tools and

technologies deployed throughout the ML lifecycle are the gears that keep this backbone strong

and flexible. This next section explores a variety of tools—from version control systems such as

Git to monitoring solutions such as Prometheus—that not only facilitate these maintenance tasks

but also enhance every stage of the ML development process.

A wide range of tools exists to support different stages of the ML lifecycle, including the following:

•	 Version control systems (Git) for code and data versioning

•	 CI/CD pipelines (Jenkins and GitLab CI/CD) for automating model training and deployment

•	 Experiment tracking tools (MLflow and Neptune) for managing and comparing

experiments

•	 Model deployment platforms (Kubeflow and TensorFlow Serving) for packaging and

deploying models in production

•	 Monitoring tools (Prometheus and Grafana) for tracking model performance and health

With a comprehensive toolkit that supports every phase of the ML lifecycle, from initial data

handling to ongoing model monitoring, the next step involves assembling a team capable of

effectively wielding these tools. The efficacy of these technologies hinges not only on their robust

capabilities but also on the skills and collaboration of the team that employs them.

Building an MLOps team
As we shift our focus from the tools that facilitate MLOps to the architects of its application, it

becomes clear that a successful MLOps operation requires more than just advanced technologies.

This section delves into the roles and skills necessary for an effective MLOps team, emphasizing

how critical the human element is in harmonizing these technologies to unlock their full potential

and drive innovation. To build a robust MLOps team, several key roles and skills are essential:

•	 Roles: Data scientists, ML engineers, DevOps engineers, data engineers, and MLOps

specialists work together in an MLOps team

•	 Skills: Team members require expertise in ML, software engineering, data engineering,

DevOps practices, and collaboration

•	 Collaboration: Effective communication and collaboration between team members are

essential for the success of MLOps initiatives

Understanding DevOps to MLOps14

By implementing these principles and practices, organizations can establish a robust MLOps

framework to streamline the machine learning lifecycle, ensure model quality, and unlock the

true potential of AI.

The following figure highlights the key differences between DevOps and MLOps:

Figure 1.3 – A comparison between DevOps and MLOps

The figure highlights their similarities and differences. Similarities include continuous integration,

continuous deployment/delivery, monitoring, and feedback loops. Differences are found in data

management, model specifics, and the focus on application versus model deployment.

Building on the foundational differences and similarities between DevOps and MLOps, we now

turn our attention to how MLOps specifically accelerates the experimentation and development

of ML models. The traditional ML workflow can be slow and iterative. The next section dives

into how MLOps accelerates this process by exploring core concepts such as automation, version

control, and containerization.

Faster experimentation and development of models
This section dives into how MLOps accelerates the experimentation and development of models.

We’ll explore core concepts such as automation, version control, and containerization that

streamline the process. We’ll also delve into techniques like hyperparameter tuning and rapid

prototyping frameworks that empower data scientists to iterate quickly and efficiently.

Chapter 1 15

By embracing these MLOps practices, you’ll unlock faster development cycles and ultimately

deliver high-performing models in a shorter time frame:

•	 Core concepts: Faster experimentation in MLOps is built upon several core concepts that

remove bottlenecks and streamline the workflow, including:

•	 Automation: This is the key driver for faster experimentation. Automating tasks

such as data preprocessing, feature engineering, model training, hyperparameter

tuning, and evaluation frees up data scientists to focus on more strategic work.

Tools such as ML pipelines and CI/CD systems can streamline this process. We

will learn more about these in Chapter 2.

•	 Version control: Tracking changes in code, data, and models allows for easy

rollbacks and comparisons between experiments. Version control systems such

as Git are essential for managing the ML lifecycle.

•	 Experiment tracking and reproducibility: Record and visualize experiment details

(hyperparameters, metrics, etc.) for easy comparison and analysis. Tools such

as Neptune, MLflow, and Weights & Biases help track experiments and ensure

reproducibility, enabling you to iterate quickly on successful approaches.

•	 Containerization: Package models and their dependencies into containers (for

example, Docker) for consistent and portable execution across different environments.

This speeds up experimentation by eliminating environment setup issues.

•	 Lightweight infrastructure: Leverage cloud-based platforms such as Azure

Machine Learning, Amazon SageMaker, and the Google AI platform to access

scalable compute resources for training models without managing infrastructure

yourself. This allows data scientists to experiment more freely without worrying

about resource limitations.

•	 Techniques for faster experimentation: In addition to these foundational concepts,

specific techniques further accelerate experimentation and iteration, such as:

•	 Hyperparameter tuning: Utilize automated hyperparameter tuning tools (for

example, Hyperopt or Ray Tune) to efficiently find the best hyperparameter values

for your model, improving performance without manual trial-and-error.

•	 Early stopping: Stop model training when performance plateaus or degrades,

saving time and resources by not overtraining models.

•	 Rapid prototyping frameworks: Explore frameworks such as TensorFlow.js,

PyTorch Lightning, and scikit-learn for quick model prototyping and iteration,

allowing you to test out new ideas quickly.

Understanding DevOps to MLOps16

•	 Feature engineering automation: Automate feature engineering steps with tools

such as Featuretools or Federação AutoML to reduce manual effort and accelerate

feature exploration.

•	 Data versioning: Version control your data to ensure consistency across

experiments and allow for easy rollbacks if needed.

•	 Additional considerations: To complement these core practices and techniques, the

following additional considerations enhance collaboration and effective model evaluation

during rapid experimentation:

•	 Collaboration tools: Utilize tools such as Jupyter notebooks or cloud-based

notebooks to facilitate knowledge sharing, code reuse, and collaboration between

data scientists.

•	 A/B testing: Integrate A/B testing frameworks to compare different model versions

in production and identify the best-performing models.

With models now being developed and refined at a much faster pace, the next critical step in the

MLOps lifecycle is ensuring these models can be reliably deployed into production environments,

where they can deliver real-world value.

Deployment of models into production
This section dives into the exciting world of deploying models into production using MLOps

practices, so they can be used in real-world scenarios. We’ll explore packaging strategies, serving

infrastructure options, and best practices for API design. We’ll also unveil different rollout

strategies and the crucial aspects of monitoring, versioning, and security to ensure a smooth

and successful transition from development to real-world impact.

•	 Key considerations: Deploying ML models from development environments to production

systems requires careful planning and execution across multiple technical domains.

To successfully deploy models into production, it’s essential to address several key

considerations that form the backbone of an effective deployment strategy. Here, we’ll

discuss the critical aspects that you need to focus on for a seamless transition:

•	 Packaging and serialization: Model packaging involves converting trained models

into formats suitable for production deployment. Common serialization formats

include pickle for Python-based models, ONNX for cross-platform compatibility,

and PMML for standardized model exchange. When packaging models, consider

size optimization through techniques like model pruning or quantization to reduce

memory footprint and improve inference speed.

Chapter 1 17

Ensure compatibility with your chosen serving framework—for instance,

TensorFlow models work seamlessly with TensorFlow Serving, while scikit-learn

models might require custom serving solutions. Container technologies like Docker

provide an excellent way to package models with their entire dependency stack,

ensuring consistent behavior across different environments.

•	 Serving infrastructure: The choice of serving infrastructure depends on your

scalability, latency, and cost requirements. Cloud-based platforms like AWS

SageMaker, Azure ML, and Google AI Platform offer managed serving solutions

with built-in auto-scaling and monitoring capabilities. For organizations

requiring more control, container orchestration platforms such as Kubernetes

provide flexibility to deploy models as microservices with custom scaling policies.

On-premise deployments might be necessary for data sovereignty or security

reasons, though they require more operational overhead. Consider factors like

expected traffic patterns, latency requirements, budget constraints, and existing

infrastructure when making your decision.

•	 Model API design: Well-designed APIs are crucial for seamless model integration

with applications. Follow RESTful design principles with clear endpoint naming,

appropriate HTTP methods, and consistent response formats. Implement proper

input validation to handle malformed requests gracefully and return meaningful

error messages. Version your APIs using URL paths (e.g., /v1/predict) or headers

to maintain backward compatibility as models evolve. Document your APIs

thoroughly using tools like OpenAPI/Swagger, including request/response

schemas, authentication requirements, and rate limiting policies. Implement

proper authentication and authorization mechanisms to control access to your

models.

•	 Model rollout strategies: Different deployment strategies offer varying levels of

risk and complexity. Blue-green deployments maintain two identical production

environments, allowing instant switching between old and new model versions

with zero downtime but requiring double the infrastructure resources. Canary

deployments gradually route a small percentage of traffic to the new model version,

enabling real-world performance validation with minimal risk, ideal for testing

model improvements before full rollout. A/B testing compares multiple model

versions simultaneously by splitting traffic, providing statistical confidence in

performance differences but requiring more complex traffic management and

analysis capabilities.

Understanding DevOps to MLOps18

•	 Additional considerations: Beyond the core deployment components, several additional

considerations are essential to ensure your models operate reliably, securely, and efficiently

in production:

•	 Model monitoring: Production models require continuous monitoring to detect

performance degradation over time. Track key metrics including prediction

accuracy, response latency, throughput, and error rates. Monitor for data drift by

comparing incoming data distributions with training data using statistical tests

or similarity metrics. Implement alerting systems using tools like Prometheus

and Grafana to notify teams when metrics exceed predefined thresholds. Consider

business-specific metrics alongside technical ones—for example, conversion rates

for recommendation models or false positive rates for fraud detection systems.

•	 Versioning and rollbacks: Maintain a comprehensive versioning system that tracks

not just model versions but also the data, code, and configuration used to create

each model. Use semantic versioning (e.g., v1.2.1) to clearly communicate the

nature of changes. Implement automated rollback mechanisms that can quickly

revert to previous model versions when issues are detected. Store model artifacts

in versioned repositories with proper metadata including performance metrics,

training datasets, and deployment notes to facilitate troubleshooting and rollback

decisions.

•	 Scalability and performance: Design your deployment architecture to handle

varying workloads efficiently. Implement horizontal scaling using load balancers

to distribute requests across multiple model instances. Use auto-scaling policies

based on metrics like CPU utilization or request queue length to automatically

adjust capacity. Consider model caching strategies for frequently requested

predictions and batch processing for scenarios where real-time inference isn’t

required. Optimize model inference performance through techniques like model

quantization, GPU acceleration, or specialized inference frameworks like TensorRT

or Intel OpenVINO.

•	 Security: Secure your model deployments against various attack vectors.

Implement robust input validation to prevent adversarial attacks and injection

attempts. Use authentication tokens or API keys to control access and implement

rate limiting to prevent abuse. Encrypt data in transit using HTTPS/TLS and

consider encryption at rest for sensitive model artifacts. Regularly audit access logs

and implement network segmentation to isolate model serving infrastructure. Be

aware of model-specific security risks like model inversion attacks or membership

inference attacks, particularly when dealing with sensitive data.

Chapter 1 19

Having a robust deployment strategy in place sets the stage for reliable model performance in

the real world. Now, let’s shift our focus to ensuring the quality and trustworthiness of those

deployed models. This is where quality assurance and end-to-end lineage tracking come into play.

Quality assurance and end-to-end lineage tracking
Ensuring the quality and trustworthiness of your ML models is paramount. This section delves into

the critical practices of quality assurance (QA) and end-to-end lineage tracking within MLOps.

We’ll explore how QA helps identify and mitigate potential issues in your models, while lineage

tracking provides transparency into the entire ML lifecycle. By understanding these practices,

you’ll be empowered to build robust and reliable models that deliver consistent value.

•	 QA in ML: Ensuring the quality and trustworthiness of your models goes beyond just their

technical accuracy. To achieve this, we need to employ a robust QA process specifically

designed for the world of ML. This process encompasses several key areas:

•	 Data quality: High-quality data forms the foundation of reliable ML models, making

data validation a critical first step in the QA process. Implement automated data

profiling to identify missing values, outliers, and inconsistent formats before they

impact model training. Use statistical techniques like z-score analysis or interquartile

range methods to detect anomalies that could skew model performance. Establish

data validation pipelines using tools like Great Expectations or Apache Griffin to

continuously monitor data quality metrics such as completeness, uniqueness, and

validity. Create data cleaning workflows that handle common issues like duplicate

records, inconsistent categorical values, and temporal inconsistencies while

maintaining audit trails of all transformations applied.

•	 Model evaluation metrics: Selecting appropriate evaluation metrics is crucial

for accurately assessing model performance across different use cases. For

classification problems, use accuracy for balanced datasets, but rely on precision

and recall when dealing with imbalanced classes—precision measures the

correctness of positive predictions while recall captures the model’s ability to

find all positive instances. The F1-score provides a balanced view by combining

precision and recall, while AUC-ROC curves help evaluate performance across

different classification thresholds. For regression tasks, Root Mean Squared Error

(RMSE) penalizes large errors more heavily, making it suitable for applications

where outliers are costly, while Mean Absolute Error (MAE) provides a more

intuitive measure of average prediction error. Always validate metrics using cross-

validation techniques to ensure robust performance estimates.

Understanding DevOps to MLOps20

•	 Bias and fairness: Addressing bias in ML models is essential for building ethical

and legally compliant systems, particularly in high-stakes applications like hiring,

lending, or criminal justice. Implement fairness metrics such as demographic

parity (ensuring equal positive prediction rates across groups), equalized odds

(equal true positive and false positive rates), and individual fairness (similar

individuals receive similar predictions). Use bias detection tools like AI Fairness 360

or Fairlearn to systematically evaluate model fairness across different demographic

groups. Apply debiasing techniques including pre-processing methods (data

augmentation or re-sampling), in-processing approaches (fairness-constrained

optimization), and post-processing adjustments (threshold optimization per

group) to mitigate identified biases.

•	 Explainability and interpretability: Model interpretability becomes critical

when stakeholders need to understand and trust AI-driven decisions, especially

in regulated industries like healthcare and finance. Implement Local Interpretable

Model-agnostic Explanations (LIME) to generate local explanations for individual

predictions by learning simple, interpretable models around specific instances.

Use SHapley Additive exPlanations (SHAP) values to provide consistent feature

importance scores that sum to the difference between prediction and baseline.

For tree-based models, leverage built-in feature importance measures, while for

neural networks, consider attention mechanisms or gradient-based attribution

methods. Create explanation dashboards that present model decisions in business-

friendly terms to facilitate stakeholder understanding and regulatory compliance.

•	 Testing strategies: Comprehensive testing ensures model reliability across different

scenarios and use cases. Implement unit tests for individual components like data

preprocessing functions, feature engineering pipelines, and model inference code

using frameworks like pytest. Develop integration tests that validate end-to-end

workflows from data ingestion through model prediction, ensuring all components

work together correctly. Design A/B testing frameworks to compare model versions

in production environments, using statistical significance testing to validate

performance improvements. Include stress testing to evaluate model behavior

under high load conditions and edge case testing to verify model responses to

unusual or adversarial inputs.

•	 End-to-end lineage tracking: Comprehensive lineage tracking provides transparency and

accountability throughout the ML lifecycle, enabling teams to understand how models

were created and how they impact business outcomes:

Chapter 1 21

•	 Benefits: Lineage tracking transforms debugging from guesswork into systematic

investigation by providing complete visibility into data flows, model dependencies,

and transformation steps. When models underperform, teams can quickly trace

back through the pipeline to identify root causes, whether they stem from data

quality issues, feature engineering problems, or model configuration changes.

For impact analysis, lineage tracking enables teams to assess downstream

effects of changes—understanding which models, dashboards, or applications

might be affected by modifying a particular dataset or feature. This capability

becomes invaluable for model governance, providing audit trails that demonstrate

compliance with regulatory requirements and internal policies. Organizations can

prove data usage authorization, model validation processes, and decision-making

transparency to regulators and stakeholders.

•	 Techniques: Implement automated lineage capture through code parsing tools

that analyze data science notebooks and scripts to extract data dependencies and

transformation logic. Use data tagging strategies with metadata management

systems like Apache Atlas or DataHub to track data origins, transformations, and

usage patterns across the organization. Deploy purpose-built MLOps platforms

such as MLflow for experiment and model tracking, Neptune for comprehensive

ML metadata management, or Kubeflow Pipelines for workflow orchestration with

built-in lineage capture. These tools automatically record model training runs,

hyperparameters, datasets used, and resulting artifacts, creating comprehensive

audit trails without requiring manual intervention from data scientists.

•	 Version control and reproducibility: Establish comprehensive version control

practices that extend beyond traditional code management to encompass the

entire ML ecosystem. Use Git for source code versioning combined with Git Large

File Storage (LFS) for managing large model files and datasets. Implement data

versioning using tools like Data Version Control (DVC) or Pachyderm to track

changes in training datasets and ensure experiments remain reproducible over

time. Create reproducible environments using containerization (Docker) or

environment management tools (Conda) to capture exact dependency versions

and system configurations. Maintain model registries that store not just trained

models but also the complete context needed for reproduction, including training

data versions, hyperparameters, and evaluation metrics.

Understanding DevOps to MLOps22

•	 Additional considerations: In addition to core QA and lineage practices, several additional

considerations further enhance the reliability, maintainability, and compliance of your

ML systems:

•	 Documentation: Comprehensive documentation serves as the foundation for

knowledge transfer, troubleshooting, and regulatory compliance throughout the

ML lifecycle. Create data documentation that describes collection methodologies,

data sources, known limitations, and quality issues to help future users understand

dataset characteristics and appropriate usage. Documentation should feature

engineering processes with clear explanations of transformation logic, business

rationale, and validation methods to ensure features can be correctly reproduced

in production. Maintain model cards that summarize model purpose, performance

characteristics, training data, evaluation results, and known limitations following

frameworks like Google’s Model Cards or similar industry standards. Use

automated documentation tools like Sphinx or GitBook to generate and maintain

up-to-date technical documentation from code comments and docstrings.

•	 Monitoring and alerting: Proactive monitoring prevents model degradation from

impacting business outcomes by detecting issues before they become critical

problems. Implement performance monitoring that tracks key metrics like

prediction accuracy, precision, recall, and business-specific KPIs using dashboards

built with tools like Grafana or custom solutions. Deploy data drift detection using

statistical tests (Kolmogorov-Smirnov, Chi-square) or machine learning-based

approaches to identify when incoming data distributions deviate significantly from

training data. Set up concept drift monitoring by comparing model performance

on recent data against historical benchmarks, triggering retraining workflows

when performance drops below acceptable thresholds. Create intelligent alerting

systems that distinguish between normal fluctuations and genuine issues, using

techniques like anomaly detection and trend analysis to reduce false alarms while

ensuring rapid response to real problems.

Now that we’ve established a foundation for building high-quality and trustworthy models, let’s

transition to the practical tools that help us manage the entire ML lifecycle. These tools embody

the MLOps principles we’ve discussed and empower data scientists and DevOps engineers to

collaborate effectively.

Chapter 1 23

MLOps toolkits: Streamlining the ML lifecycle with
ML CLIs
As we conclude our exploration of MLOps foundations, let’s turn to the practical tools that bring

these concepts to life—specifically, the command-line interfaces (CLIs) that power modern ML

workflows. Think of CLIs as the control center for your ML operations, providing direct, scriptable

control over everything from data management to model deployment. Whether you’re training

models locally or orchestrating complex distributed systems, these interfaces form the backbone

of efficient MLOps practices.

Modern ML CLIs, offered by platforms such as TensorFlow, PyTorch, and major cloud providers

(Azure, AWS, and GCP), transform repetitive tasks into automated workflows while ensuring

reproducibility and version control. They act as a universal language for MLOps, allowing teams

to standardize their processes across different environments and scales. By mastering these tools,

you’ll be able to automate workflows, track experiments consistently, and manage ML systems

with the precision and reliability demanded by production environments.

Types of ML CLIs
Having a good understanding of the different types of ML CLIs available equips you to make an

informed decision when choosing the right tool for your project. Let’s explore the three main

categories of ML CLIs:

•	 Open source ML frameworks: Tools such as TensorFlow and PyTorch offer built-in CLIs

for training models, managing data, and deploying them.

•	 Standalone MLOps tools: Platforms such as Kubeflow Pipelines and MLflow provide

dedicated CLIs for experiment tracking, model registry, and serving.

•	 Cloud-specific tools: Major cloud providers—Azure, AWS, and GCP—each offer their

own ML services and corresponding CLIs for seamless integration.

By understanding the strengths of each type of ML CLI, you can select the tool that best aligns

with your project’s needs and existing infrastructure.

Choosing the right ML CLI
Selecting the ideal CLI for your project depends on several factors:

•	 Existing infrastructure: Consider the frameworks, tools, and cloud platforms your team

is already familiar with.

Understanding DevOps to MLOps24

•	 Project requirements: Match the CLI features with your project’s needs for experiment

tracking, model registry, deployment, and monitoring.

•	 Ease of use: Evaluate the learning curve and user-friendliness of the CLI for your team’s

skill sets.

•	 Community and support: A vibrant community and accessible documentation are

invaluable for effective tool utilization.

By thoughtfully selecting and utilizing an ML CLI, you can significantly accelerate development,

enhance model quality, and streamline the transition from experimentation to production

environments.

This section provides a high-level overview of ML CLIs offered by major cloud providers: Azure

ML, Amazon SageMaker, and GCP gcloud. Each platform offers a CLI specifically designed to

streamline the ML workflow.

Common management tasks with ML CLIs
ML CLIs empower you to manage various aspects of your ML projects through commands. Here

are some general categories of tasks you can perform:

•	 Job creation: Initiate ML training or execution.

•	 Compute resource management: Provision and configure computing resources for your

projects.

•	 Data management: Manage datasets used for training and evaluation.

•	 Model management: Register, track, and deploy ML models.

•	 Endpoint management: Create and configure endpoints for serving models in production.

•	 Deployment management: Deploy models to production environments.

While we haven’t explored specific commands yet, detailed documentation links are provided

for each platform in the upcoming subsections. These resources will guide you through the

installation, setup, and in-depth usage of the respective ML CLIs.

In subsequent chapters, we’ll delve deeper into these concepts and provide practical examples

using a chosen ML CLI. This initial introduction lays the groundwork for understanding the power

and functionality of ML CLIs in managing your ML projects.

Chapter 1 25

Exploring ML CLIs for different cloud providers
This section explores the ML CLIs offered by major cloud providers: Azure ML (AML), Amazon

SageMaker, and GCP gcloud. Each subsection showcases sample commands for common tasks

such as creating jobs, compute resources, data, models, and then deploying models. Links

to detailed installation and setup documentation are provided for each platform under each

command section.

Azure ML CLI v2
This section shows how the Azure ML CLI can be used to perform a basic AML workflow. Let’s

begin!

To create an ML job, run the following command:

```bash

az ml job create --name my-job --file job.yaml

```

In this example, job.yaml contains the schema of the job. Azure ML CLI v2 supports extensive use of

YAML files to specify complex schemas for different command-line inputs. From Chapter 2 onward,

we will use more of this syntax. Documentation on this CLI schema is available at https://learn.
microsoft.com/en-us/azure/machine-learning/reference-yaml-overview?view=azureml-

api-2.

To manage compute resources, run this command:

```bash

az ml compute create --name my-compute --type amlcompute --min-instances 0 
--max-instances 4

```

To manage datasets, run this command:

```bash

az ml data create --name my-dataset --path path/to/data --type file

```

To manage models, run this command:

```bash

az ml model create --name my-model --path path/to/model.pkl --type custom_
model

```

https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-overview?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-overview?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-overview?view=azureml-api-2

Understanding DevOps to MLOps26

To manage endpoints, run this command:

```bash

az ml online-endpoint create --name my-endpoint

```

To manage deployments, run this command:

```bash

az ml online-deployment create --name blue --endpoint my-endpoint --model 
my-model:1 --instance-type Standard_DS3_v2 --instance-count 1

```

The following is the installation and setup documentation or the Azure ML CLI documentation:

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-cli.

AWS CLI with SageMaker
This section shows how the AWS CLI with SageMaker can be used to perform a basic AML

workflow. Let’s begin!

To create an ML job, run this command:

```bash

aws sagemaker create-training-job --training-job-name <job-
name> --algorithm-specification TrainingImage=<training-image-
uri>,TrainingInputMode=File --role-arn <role-arn> --input-data-config 
<input-data-config> --output-data-config S3OutputPath=<s3-output-path> 
--resource-config InstanceType=<instance-type>,InstanceCount=<instance-
count>,VolumeSizeInGB=<volume-size> --stopping-condition 
MaxRuntimeInSeconds=<max-runtime>

```

To manage compute resources, run this command:

```bash

aws sagemaker create-notebook-instance --notebook-instance-name <instance-
name> --instance-type <instance-type> --role-arn <role-arn>```

To manage datasets, run this command:

```bash

aws sagemaker create-dataset --dataset-name <dataset-name> --dataset-type
<dataset-type> --dataset-source DataSourceArn=<data-source-arn>

```

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-cli


Chapter 1 27

To manage models, run this command:

```bash

aws sagemaker create-model --model-name <model-name> --primary-container
Image=<container-image>,ModelDataUrl=<model-data-url> --execution-role-arn
<role-arn>

```

To manage endpoints, run this command:

```bash

aws sagemaker create-endpoint-config --endpoint-config-name <config-
name> --production-variants VariantName=<variant-name>,ModelName=<model-
name>,InstanceType=<instance-type>,InitialInstanceCount=<instance-count>

aws sagemaker create-endpoint --endpoint-name <endpoint-name> --endpoint-
config-name <config-name>

```

To manage deployments, run this command:

```bash

aws sagemaker create-model-package --model-package-name <package-name>
--inference-specification ContainerDefinitions=[{Image=<container-image>}]
--source-algorithm-specification SourceAlgorithms=[{AlgorithmName=<algorit
hm-name>,ModelDataUrl=<model-data-url>}]

```

To learn about the installation and setup of the Amazon SageMaker CLI, you can visit https://

docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html.

GCP gcloud CLI
This section shows how the GCP gcloud CLI can be used to perform a basic AML workflow. Let’s 

begin!

To create an ML job, run the following command:

```bash

gcloud ai-platform jobs submit training <job-name> --region <region>
--module-name <module-name> --package-path <package-path> --job-dir <job-
dir>

```

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html


Understanding DevOps to MLOps28

To managing compute resources, run the following command:

```bash

gcloud ai-platform instances create <instance-name> --zone <zone>
--machine-type <machine-type> --accelerator type=<accelerator-
type>,count=<accelerator-count>

```

To manage datasets, run the following command:

```bash

gcloud ai-platform datasets create <dataset-name> --region <region>
--metadata-file <metadata-file-path>

```

To manage models, run the following command:

```bash

gcloud ai-platform models create <model-name> --regions <region>
--description "<model-description>"

```

To manage endpoints, run the following command:

```bash

gcloud ai-platform endpoints create <endpoint-name> --model <model-name>
--region <region>

```

To manage deployments, run the following command:

```bash

gcloud ai-platform versions create <version-name> --model <model-name>
--origin <model-dir> --runtime-version <runtime-version> --framework
<framework>

```

To learn more about the installation and setup of the GCP gcloud CLI, you can go to https://

cloud.google.com/sdk/gcloud.

https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud


Chapter 1 29

Benefits of organized structure
By examining the preceding commands across different providers, readers gain valuable insights:

•	 Similarities and differences: You should be able to identify how each platform approaches 

the ML project lifecycle.

•	 Instructional content: The clear examples demonstrate command usage for practical 

application, which you will benefit from.

•	 Informed tool selection: You will be able to understand how platform familiarity and 

project requirements influence tool choice.

•	 Comprehensive learning: From the links to detailed documentation, you can gain an 

in-depth exploration of specific commands and installation processes.

For ease of understanding and implementation, subsequent chapters will primarily utilize 

Azure CLI commands. Chapter 2 will delve deeper into workspace and CLI usage, establishing 

the fundamental building blocks for future chapters.

Summary
This chapter has demystified MLOps, showing how it bridges the gap between ML development 

and real-world deployment. Building on DevOps foundations, MLOps addresses the unique 

challenges of managing non-deterministic models and evolving data landscapes through 

automation, version control, and continuous monitoring.

We explored the entire ML lifecycle through an MLOps lens, from data management and 

experiment tracking to model deployment and security. These practices, combined with powerful 

command-line tools, enable organizations to build reliable, scalable ML systems that can evolve 

with business needs. At its heart, MLOps is about creating a culture of collaboration between data 

scientists, ML engineers, and operations teams to transform promising models into production-

ready intelligent systems.

In the next chapter, we’ll dive into practical MLOps, beginning with the model training process.





2
Training and Experimentation

This chapter equips you with the skills to navigate the training phase of ML projects within Azure. 

We will cover the foundational elements of Azure Machine Learning (AML) that are crucial for 

both data scientists and DevOps engineers. This includes the AML workspace, which serves as 

the central hub for collaboration and managing machine learning workflows, and the AML CLI, 

a powerful toolkit that enables you to interact with AML resources efficiently through command-

line operations.

We’ll also guide you through the entire training process, from data preparation to model selection 

to ensure high-quality data for your models. The chapter will cover testing different algorithms 

and configurations to identify patterns and develop models. You’ll learn how to use the CLI to 

efficiently manage experiments and jobs. It will also break down techniques for selecting the best 

model based on key performance indicators (KPIs). We’ll guide you through making data-driven 

decisions to choose the most effective model.

Mastering these skills is essential for streamlining your ML workflows, reducing development 

time, and increasing collaboration across teams. By understanding how to efficiently train and 

manage models in Azure, you’ll be better equipped to scale your solutions, improve model quality, 

and accelerate time-to-value in real-world projects.

In this chapter, we are going to cover the following main topics:

•	 Key stages in building an ML model

•	 AML workspace

•	 AML CLI

•	 Jobs and experiments in AML

•	 Data preparation



Training and Experimentation32

Key stages in building an ML model
Let’s understand the iterative nature of the ML workflow and the key processes involved in building 

models:

1.	 Prepare data: Any ML problem statement starts with preparing data. This step involves 

collecting relevant data, cleaning it to remove inconsistencies or errors, and formatting 

it in a way that can be easily processed by ML algorithms.

2.	 Train: In this step, you choose an appropriate ML algorithm or model for your task. You then 

train the algorithm on the prepared data, allowing it to learn patterns and relationships 

in the data. This results in the creation of a trained model that can make predictions or 

take actions based on new data.

3.	 Score: Once your model is trained, you evaluate its performance by testing it on new data 

with known outcomes. This step helps you understand how well your model generalizes 

to unseen data and can identify areas for improvement.

4.	 Evaluate: In the evaluation step, you compare the outcomes predicted by your model with 

the known outcomes of the test data. You can then measure the quality of your model’s 

performance using relevant KPIs such as accuracy, precision, recall, or F1 score.

5.	 Decide: Based on the evaluation results, you decide about your model. If it meets your 

performance criteria, you can deploy it into production for real-world use. Otherwise, you 

may need to go back and tweak any of the previous steps, such as collecting more data, 

trying a different algorithm, or adjusting your model’s parameters.

The following figure captures the essence of the process. This diagram is important as we will 

refer to this multiple times throughout our journey during the other chapters as well:



Chapter 2 33

Figure 2.1 – The high-level steps to build an ML model

Now that we’ve established the basic process of the ML workflow, let’s discuss the core AML 

component that facilitates these activities.

AML workspace
An AML workspace is a centralized environment where you can manage all the components of 

your ML projects. It acts as a hub for data scientists, developers, and IT professionals to collaborate 

and manage MLOps. The workspace provides a secure and scalable environment to work with 

ML models, data, and compute resources.

Key features of an AML workspace
Some salient features of the AML workspace are as follows:

•	 Resource management: The workspace allows you to manage various resources such as 

compute instances, data stores, and pipelines. It provides a structured way to organize 

and access these resources across different projects and teams.



Training and Experimentation34

•	 Collaboration, access control, and cost management: Workspaces enhance collaboration 

by implementing role-based access control, ensuring that only authorized personnel can 

access sensitive data and operations, which is a cornerstone of DevOps’ best practices for 

managing permissions and roles. For team leads and administrators, these workspaces act 

as central hubs for managing access, controlling costs, and isolating data. Organizational 

best practices suggest using specific user roles to manage permissions effectively, assigning 

access based on user groups, and creating separate workspaces for each project to improve 

cost reporting and configuration management. Additionally, sharing Azure resources 

across workspaces can optimize setup time and resource utilization, further streamlining 

the management process.

•	 Integration with DevOps practices: AML workspaces integrate seamlessly with 

existing DevOps tools and practices. This includes continuous integration/continuous 

deployment (CI/CD) pipelines, enabling automated testing and deployment of ML models.

•	 Monitoring and tracking: The workspace includes capabilities for monitoring and 

tracking experiments, models, and deployments. This is crucial for understanding model 

performance, data drift, and operational metrics, which are key for maintaining reliable 

ML systems in production.

•	 Scalability and security: Azure ensures that the workspace is scalable to handle large 

datasets and compute workloads. It also provides built-in security features to protect data 

and resources, which is a critical aspect of any DevOps-oriented environment.

Now that we have explored the core features and benefits of an AML workspace, let’s take a closer 

look at the key components that make up the workspace and how they support your machine 

learning workflows.

Key components of a workspace
Let’s understand the essential components of an AML workspace, including compute resources, 

data stores, environments, models, and reusable code components. This section explains how 

each component contributes to the overall workflow:

•	 Compute resources:

•	 Compute instances: These are preconfigured cloud computing resources that you 

can use to run Jupyter notebooks, training scripts, and other ML operations. They 

are essential for developing and testing ML models directly in the cloud.

•	 Compute clusters: For larger workloads and training more complex models, 

compute clusters provide scalable cloud computing power that can be adjusted 

based on your needs.



Chapter 2 35

•	 Data stores and data:

•	 Data stores: These are storage accounts attached to your workspace, used to store 

the data your models need for training and prediction. AML supports various types 

of data stores, including Azure Blob Storage and Azure File Storage.

•	 Data: Managed versions of data can be easily shared and reused across various 

experiments. Data ensures that every model training run is traceable and 

reproducible by keeping track of data versions.

•	 Environments: Environments specify the Python packages, environment variables, and 

software settings required to run your training scripts or host your models. They ensure 

that your experiments are reproducible by maintaining consistent software configurations.

•	 Models: Trained ML models are stored as assets within the workspace. You can manage 

model versions, track their performance, and deploy them to production environments 

directly from the workspace.

•	 Components: These are reusable pieces of code that define a step in your ML pipeline, 

such as data preparation, model training, or inference. Components help standardize 

processes and improve efficiency by enabling reuse across different projects and pipelines.

Having grasped the core components of your AML workspace, it’s time to understand how to 

effectively manage these resources. Each component plays a vital role in your ML workflow, and 

efficiently managing them is key to streamlining your development process.

In the next section, we’ll delve into the practicalities of managing workspace resources. We’ll 

explore how to leverage the Azure portal and Azure CLI to create, configure, and utilize these 

components within your workspace. This will equip you with the skills to set up your workspace, 

add compute resources, connect data stores, register data, and configure environments—all 

essential steps for building a robust foundation for your ML projects.

Managing workspace resources
Creating and managing these resources is straightforward in AML. You can use the Azure portal, 

Azure CLI, or AML SDK to create and configure workspaces and their associated resources. Here’s 

how you might typically set up a workspace and its resources:

1.	 Create a workspace: You can create a workspace directly from the AML studio, the Azure 

portal, or using the CLI. This workspace acts as a container for all your ML assets.

2.	 Add compute resources: Once your workspace is set up, you can add compute instances 

or clusters depending on your processing needs. These resources can be scaled up or down 

based on the workload.



Training and Experimentation36

3.	 Connect data stores: Attach or create new data stores to your workspace to ensure that 

your data is accessible for training and inference tasks.

4.	 Register data: Import and register datasets to your workspace to make them easily 

accessible for your experiments and ensure that data versioning is maintained.

5.	 Configure environments: Define and configure environments that can be reused across 

different experiments to ensure consistency in your training and deployment phases.

By effectively managing these resources, you can streamline your ML workflows, enhance 

collaboration among team members, and accelerate the time from experimentation to production. 

Now, as we mentioned in the previous chapter, let’s get into the specific examples of how to use 

the AML CLI to get started.

AML CLI
Creating a robust ML workspace starts with setting up a dedicated environment that isolates 

your project dependencies from global settings. This is crucial for maintaining consistency across 

different development stages and among various team members. In this section, we will look 

at how to set up and install the necessary packages in the AML CLI and then understand its 

fundamental structure and usage.

Setting up a virtual environment
Here’s a step-by-step guide to setting up a virtual environment and installing the necessary 

packages:

1.	 Choose your environment manager: For Python-based projects, tools such as conda or 

venv are popular choices. conda is preferred for managing environments that require 

complex dependencies, while venv is suitable for simpler Python dependencies.

2.	  Create a virtual environment:

•	 Use this for conda:

```

conda create -n myenv python=3.11

conda activate myenv

```



Chapter 2 37

•	 Use this for venv:

```

python -m venv myenv

source myenv/bin/activate # On Windows use `myenv\Scripts\
activate`

```

3.	 Install the AML CLI package:

pip install azure-cli

az extension add -n ml

4.	 Test the installation: Ensure all packages are installed correctly and can be imported into 

your Python environment without errors:

az  --version

Check that azure-cli and the ml extensions are installed and the versions are as shown 

here:

Figure 2.2 – Installation of CLI



Training and Experimentation38

A quick help on the main command shows the subgroups that support the different parts 

of MLOps:

Figure 2.3 – Basic subgroups of the CLI

To update the ml extension to the latest version, use the following:

az extension update -n ml

With your environment set up and the AML CLI installed, you are now ready to explore the 

basic structure and usage of the AML CLI to begin managing your machine learning workflows 

efficiently.

Basic structure and usage of the AML CLI
The AML CLI is structured around a set of commands that correspond to different aspects of ML 

workflows. Here are a few of the basic commands and their purposes:

•	 Creating a workspace: Before running any ML jobs, you need a workspace. It can be 

created using the following:

az ml workspace create --name <your-workspace-name> --resource-group 
<your-resource-group>  --subscription-name <your-subscription-name>



Chapter 2 39

•	 Setting defaults: To avoid repeatedly specifying common parameters such as workspace 

and resource group, you can set defaults:

az account set --subscription-name <your-subscription-name>

az configure --defaults group=<your-resource-group> workspace=<your-
workspace-name>

•	 Creating a new workspace: While you can create a workspace using direct CLI parameters, 

you can also create a new workspace using a YAML configuration file for a more structured 

and reusable setup, which is especially useful for consistent workspace management in 

DevOps workflows. To create a new workspace using Azure CLI v2, you can utilize the 

following command structure. This command allows you to specify the workspace details 

in a YAML file, which includes configurations such as the workspace name, location, and 

other descriptive information:

az ml workspace create --name my_workspace

This setup will help you understand the foundational commands necessary to start running 

ML training jobs on Azure using the AML CLI. It’s important to familiarize oneself with these 

commands to effectively manage and execute ML workflows in the cloud.

Workspace: A closer look
Now with a basic understanding of the usage of the CLI, let’s suppose you create your first 

workspace using the CLI command in the last section. The following figures shows how the 

workspace created is presented both in the CLI and AML Studio (web interface to interact with 

MLOps):

Figure 2.4 – Workspace from the CLI, first look



Training and Experimentation40

While the CLI provides a straightforward, scriptable way to view and manage your workspace, 

many teams also use the Azure portal for a visual overview and easier navigation through 

workspace resources. The Azure portal complements the CLI by offering an intuitive interface to 

explore and manage your AML workspace interactively:

Figure 2.5 – Workspace from the Azure portal

If you run the workspace shown in Figure 2.5, it shows the basic resources that are created to 

support a robust, secure, and scalable ML environment in Azure, each serving a specific purpose 

to support the end-to-end ML lifecycle. The details of these resources are as follows:

•	 Storage account: Stores datasets, model artifacts, and logs needed for ML operations

•	 Azure Container Registry (ACR): Manages and stores Docker container images for training 

and deployment environments

•	 Azure Application Insights: Monitors the performance and health of deployed models, 

providing actionable insights

•	 Key Vault: Securely stores and manages sensitive information such as API keys and 

connection strings



Chapter 2 41

These CLI commands and configurations provide a robust framework for creating and managing 

AML workspaces, ensuring that users can efficiently handle their ML resources and settings.

Now we have the workspace set up, let’s understand the next concept that makes the workspace 

useful: the model training process. The two key concepts we will cover here are jobs and experiments.

Jobs and experiments in AML
In AML, the concepts of jobs and experiments are fundamental to organizing, executing, and tracking 

ML workflows.

Jobs
A job in AML refers to a single execution of a training script or a model deployment script. Jobs 

are used to perform tasks such as training models, tuning hyperparameters, or deploying models 

to production. Each job runs in a specific compute environment and can be configured with its 

own set of parameters and data inputs. Jobs are the building blocks of any ML workflow in Azure, 

allowing data scientists and developers to automate and scale their ML tasks efficiently.

Experiments
An experiment is a grouping mechanism in AML that helps you organize and keep track of multiple 

runs. A run, in this context, is an instance of a job execution. Experiments are useful for comparing 

the performance of different runs, tracking the progress of model development over time, and 

systematically managing the lifecycle of ML models. Each experiment can contain multiple runs, 

and AML provides tools to log, monitor, and compare the metrics and outputs of these runs.

Together, jobs and experiments provide a structured way to manage ML projects, enabling teams to 

maintain a clear and organized workflow, track the evolution of models, and ensure reproducibility 

and accountability in ML operations.

In these projects, running training jobs and conducting experiments is a crucial process that 

bridges the gap between data preparation and model deployment. It involves systematically 

testing different models, hyperparameters, and datasets to identify the best-performing solution. 

By experimenting with different configurations, you can understand your models’ behavior and 

make informed decisions about which model to select.



Training and Experimentation42

The diagram in Figure 2.6 provides a high-level overview of the experiment lifecycle in AML:

Figure 2.6 – Experiment, a high-level look

This figure shows the sequential steps involved, starting from workspace creation and compute 

resource setup, through data preparation and experiment definition, to job execution and 

metrics collection. The process concludes with the registration of the best-performing model, 

showcasing a structured workflow that ensures systematic management and reproducibility of 

the ML experiment.

Jobs and experiments: Why they matter
There are a number of advantages that come with using jobs and experiments:

•	 Systematic organization: Jobs and experiments help structure the model development 

process by allowing you to organize multiple runs, track their performance, and manage 

resources efficiently.

•	 Experimentation and comparison: By grouping jobs under experiments, you can easily 

compare different runs, identify trends, and determine which configurations yield the best 

results. This comparison is essential for selecting the most suitable model for production.



Chapter 2 43

•	 Reproducibility: When managed correctly, jobs and experiments ensure that your training 

processes are reproducible. You can track the exact configurations used, making it easier 

to reproduce results and avoid discrepancies.

•	 Optimization: Experimentation is the cornerstone of optimization in ML. By running 

multiple jobs with varying configurations, you can fine-tune your models and 

hyperparameters to achieve optimal performance.

Now that we understand these concepts, let’s move to the next step: preparing data.

Data preparation
In this section, we will delve into setting up experiments, defining jobs, and using the AML CLI 

to run and monitor training jobs. By mastering this process, you will be equipped to conduct 

meaningful experiments that help you select the right model for your specific use case. The 

success of any ML project hinges on the quality of its data. Before diving into model training, data 

preparation is crucial to ensure your data is clean, consistent, and ready for analysis.

Steps in data preparation
This process typically involves several key actions:

•	 Cleaning: Identifying and correcting errors or inconsistencies in your data. This might 

involve removing duplicates, fixing missing values, and handling typos.

•	 Formatting: Ensuring data types are consistent and formatted correctly. For example, 

converting dates to a standard format or transforming categorical variables into numerical 

representations.

•	 Handling missing values: Deciding how to deal with missing or null values. Options 

include removing them, imputing them with appropriate values, or using specific 

techniques depending on the data and modeling approach.

•	 Outlier treatment: Identifying and handling outliers that could skew your results. Outliers 

are data points that fall far outside the expected range. You might choose to remove them, 

transform them, or keep them after careful analysis.



Training and Experimentation44

The overall process that makes the data ready for experimentation looks like the following figure:

Figure 2.7 – Data preparation in AML

With these key steps completed, your data becomes ready for experimentation and model 

development. But why is this effort so crucial in your ML workflows?

What are the benefits of proper data preparation?
By meticulously preparing your data, you lay the foundation for creating reliable and accurate 

ML models. Clean and well-structured data allows your models to learn effectively from patterns 

and relationships within the data, ultimately leading to better predictions.



Chapter 2 45

Registering data in the AML workspace
Once your data is prepared, the next step is to register it within your AML workspace. Registering 

essentially means creating a record of your data asset within the workspace. This process offers 

the following advantages:

•	 Storage and tracking: The data is uploaded to a managed location within the workspace, 

making it readily accessible for various experiments. AML also tracks different versions 

of your data, allowing you to compare and revert if needed.

•	 Accessibility and collaboration: Registered data becomes easily accessible across different 

experiments and team members. Everyone working on the project can find and use the 

same data source, promoting consistency and reproducibility.

How can data be registered?
In AML, registering data involves creating a dataset object. This dataset object holds information 

about your data, including its name, version, and location within the workspace. This process 

typically follows data preparation and ensures your datasets are organized, versioned, and 

accessible for experiments and pipelines. To clarify, here is how this process fits into your workflow:

•	 Data preparation: This is the overarching process of getting your data into a form that 

can be effectively used by ML algorithms. In AML, data preparation involves several steps, 

from cleaning to outlier treatment, all of which are necessary for building reliable models:

•	 Cleaning: Cleaning involves removing duplicates, fixing missing values, and 

correcting typos in your dataset. In AML, this might involve using data wrangling 

tools or writing custom scripts to clean data stored in AML data stores, ensuring 

the data is accurate and consistent.

•	 Formatting: Formatting is about converting dates and transforming categorical 

variables into formats suitable for ML. This step ensures that the data is in the 

correct format for model training. AML provides tools such as the DataPrep SDK 

to handle these transformations efficiently.

•	 Handling missing values: This involves either removing missing values or 

imputing them using specific techniques. AML allows you to handle missing data 

systematically, ensuring your model can work with the available data without 

being skewed by gaps.



Training and Experimentation46

•	 Outlier treatment: Outliers can skew model results, so they need to be identified 

and treated. AML offers various tools for detecting and handling outliers, whether 

by removing, transforming, or deciding to keep them based on their relevance to 

the problem.

•	 Registering data: In AML, registering data involves organizing, storing, and tracking 

datasets in AML data stores. This step ensures data accessibility and collaboration across 

teams, making it easier to share and reuse datasets.

Now that we laid the concepts of data as an asset and registered in the workspace for this to be 

used in jobs, let’s get into how to set up the jobs in an experiment.

Setting up an experiment
As we learned in the previous section, an experiment in AML acts as a container for your training 

runs. It groups together different iterations of model training, allowing you to track their progress, 

compare results, and analyze performance.

Here’s a breakdown of the key steps involved in setting up an experiment using the AML CLI:

1.	 Prepare your data: Ensure your data is clean and registered within the workspace, as 

discussed earlier.

2.	 Feature selection: Identify the features in your data that are most relevant to your 

predictions. AML offers tools to help you select features that contribute significantly to 

your model’s performance.

3.	 Choose a model/algorithm: Select an ML model that aligns with the nature of your problem. 

Common choices include linear regression for continuous predictions or logistic regression 

for binary classifications. AML also provides ways to define your model configuration.

Creating a simple experiment by running a job
Now, let’s explore how to set up and run a simple training job within an experiment using the 

AML CLI. Here’s a step-by-step guide:

1.	 Define the experiment: Specify the name for your experiment within the job configuration 

file (YAML format). This file defines various aspects of your training job. Here’s an example 

YAML configuration snippet:

$schema: https://azuremlschemas.azureedge.net/latest/commandJob.
schema.json

command: python train.py --data-folder ${{inputs.training_data}}



Chapter 2 47

experiment_name: my-first-experiment  # Name of your experiment

environment: azureml:myenv:1  # Replace with your environment name 
and version

inputs:

  training_data:

    type: uri_folder

    path: azureml://datastores/workspaceblobstore/paths/my-dataset/  
# Replace with your dataset path

outputs:

  model_output:

    type: uri_folder

    path: azureml://datastores/workspaceblobstore/

          paths/model-output/  # Location for model artifacts

2.	 Prepare training and scoring scripts: Ensure you have two Python scripts:

•	 Training script: This script handles data loading, model training, and logging 

metrics.

•	 Scoring script: This script defines how to load the trained model and generate 

predictions on new data. The scoring script typically takes the model path and 

new data as inputs and returns the predictions.

3.	 Create a YAML job configuration file: The YAML file defines various configurations for 

running your training job, like the previous example.

Here’s an updated version incorporating the scoring script:

YAML

$schema: https://azuremlschemas.azureedge.net/latest/commandJob.
schema.json

experiment_name: my-first-experiment  # Referenced experiment name

# Training Script and Data

command: python train.py --data-folder ${{inputs.my_data}}

environment: azureml:myenv:1  # Replace with your environment name



Training and Experimentation48

inputs:

  my_data:

    type: uri_folder

    path: azureml://datastores/workspaceblobstore/

          paths/my-dataset/  # Path to your registered dataset

# Scoring Script and Outputs

outputs:

  model_output:

    type: uri_folder

    path: azureml://datastores/workspaceblobstore/

          paths/model-output/

post_run_scripts:

  - arguments:

      model_name: ${{outputs.model_output}}

        # Path to the trained model

      data_path: <path/to/new/data.csv>

        # Replace with path to your new data

    command: python score.py --model-path ${{arguments.model_name}}

             --data ${{arguments.data_path}}

Let’s walk through the different sections of this YAML to understand more:

•	 The post_run_scripts section defines a script to run after the training job 

completes.

•	 The scoring script (score.py) is executed with arguments specifying the trained 

model path (model_name) and the path to new data (data_path) for generating 

predictions.

Here’s a basic example structure for a scoring script (score.py):

import pickle

import pandas as pd

# Load the trained model

model_path = "<model_path>"  # Replace with argument received

with open(model_path, "rb") as f:

    model = pickle.load(f)



Chapter 2 49

# Load new data

data = pd.read_csv("<data_path>")  # Replace with argument received

# Generate predictions

predictions = model.predict(data)

# You can process or return the predictions here

print(f"Predictions: {predictions}")

Let’s break down the preceding code block:

•	 The script loads the trained model using the provided path.

•	 It loads the new data for prediction using pandas.

•	 The script uses the loaded model to generate predictions on the new data.

You can modify this script to process or return the predictions in the desired format.

1.	 Submit the job: Use the AML CLI to submit the job, providing the path to your YAML 

configuration file. Here’s the corresponding CLI command:

Bash

az ml job create --file my-job.yml

2.	 Monitor the job: Track the progress of your job through the AML Studio or using the 

following CLI v2 command:

Bash

az ml job show --name <job_name>

3.	 Review the outputs: Once the job is completed, you can review the outputs, logs, and 

metrics. This information is crucial for evaluating the performance of your model and 

making any necessary adjustments. The outputs will typically be stored in the location 

specified in the outputs section of your YAML configuration file.

The previous example shows an end-to-end example of running training and doing some basic 

scoring of the model. Make sure to do the following:

•	 Replace the placeholders in the YAML configuration file with your specific information.

•	 Ensure you have an AML workspace set up and the Azure CLI with the ML extension  

(az ml) installed before running these commands.



Training and Experimentation50

By incorporating a scoring script into your job configuration, you can automate the process of 

generating predictions on new data using your trained model within an AML experiment. This 

streamlined approach simplifies the model deployment and evaluation workflow, which we will 

talk about in later chapters.

At this point, we have the experiment set up and the jobs are running; each successful run will 

produce one or models as artifacts. The next section discusses the process to choose the right 

model that is suitable for the real business scenario.

Choosing the model/algorithm
Selecting the appropriate ML algorithm is a fundamental step in building an effective model. The 

choice of algorithm can significantly impact the model’s performance and its ability to generalize 

to new data. This decision is typically based on the problem, the dataset’s characteristics, and 

the evaluation metrics used to gauge performance. By running multiple jobs and evaluating 

their outcomes, you can determine which algorithm best meets your project’s requirements. 

The following sections will guide you through selecting the right algorithm using the AML CLI, 

ensuring that you start your ML journey on the right foot.

Defining the evaluation criteria
The parameters for defining the evaluation criteria are as follows:

•	 Performance metrics: This involves identifying KPIs that align with your business goals 

(e.g., accuracy, loss, precision, recall, F1 score, ROC-AUC for classification, and RMSE and 

MAE for regression).

•	 Resource usage: This entails tracking training time, memory usage, and compute costs 

to assess model efficiency.

•	 Interpretability: This involves evaluating the interpretability of models, especially if 

business decisions rely on understanding predictions.

Collecting metrics and artifacts
The parameters for collecting metrics and artifacts are as follows:

•	 Metrics logging: This entails ensuring that the metrics for each model are properly logged 

during the experiment. AML automatically captures metrics for each job.

•	 Output artifacts: This requires capturing model outputs such as confusion matrices, 

feature importances, and other relevant artifacts for evaluation.



Chapter 2 51

Comparing models
The parameters for comparing models are as follows:

•	 Cross-validation scores: This involves comparing models based on cross-validation scores 

to ensure their performance generalizes well.

•	 Overfitting check: This covers evaluating whether any model is overfitting or underfitting 

by comparing training and validation metrics.

•	 Visual analysis: This entails using visualization tools to compare model performance 

visually. AML Studio provides a rich interface for visual comparison.

Selecting the best model
The parameters for selecting the best model are as follows:

•	 Performance vs. efficiency: This requires striking a balance between model performance 

and resource efficiency. A model with slightly lower performance but significantly lower 

resource usage might be preferable.

•	 Business requirements: This entails ensuring that the selected model aligns with business 

requirements in terms of accuracy, latency, interpretability, and regulatory compliance.

•	 Finalize model: Once the best model is identified, promote it to the production stage and 

proceed with deployment.

This structured approach, summarized in Figure 2.8, ensures that the selected model not only 

performs well but also aligns with the ML project’s broader objectives.

Figure 2.8 – Mapping the model selection process



Training and Experimentation52

After defining your evaluation criteria and comparing model performance based on key metrics, 

the next essential step is to ensure that these metrics are meticulously logged and tracked. Accurate 

tracking of experiment data not only aids in model comparison but also enhances reproducibility 

and efficiency in the ML lifecycle.

Tracking and comparing model experiments in ML
In the realm of ML, the ability to track and compare experiments is crucial for developing effective 

models. This section delves into the methodologies and tools that facilitate the meticulous 

recording and analysis of model experiments. Utilizing platforms such as MLflow in conjunction 

with AML enhances the management of the lifecycle of ML experiments. MLflow integrates 

seamlessly with AML to log metrics and artifacts, providing a robust framework for tracking 

experiments across various environments, whether they are on local machines, remote compute 

targets, or cloud-based services such as Azure Databricks and Azure Synapse Analytics.

Tracking involves the detailed logging of experiment metadata, which includes code versions, 

environmental details, input data, model parameters, and evaluation metrics. This comprehensive 

data collection is pivotal for experiment reproducibility and analysis. Moreover, comparing 

these experiments is facilitated through visual tools and APIs that allow researchers to discern 

performance metrics and make informed decisions about model adjustments or iterations.

The next section will guide you through setting up and utilizing these tracking tools, configuring 

experiments, and effectively comparing the outcomes to refine your ML models. By mastering 

these practices, you can ensure systematic progress in your ML projects, leading to more reliable 

and optimized models.

Tools for tracking
Several tools are available for tracking experiments in ML, each with its own strengths and 

integration capabilities. Here’s a brief overview of popular tools:

•	 MLflow: This is an open source platform primarily for managing the end-to-end ML 

lifecycle, including experimentation, reproducibility, and deployment.

•	 TensorBoard: Deeply integrated with TensorFlow, this provides visualization and tooling 

needed for ML experimentation, including tracking metrics, visualizing model graphs, 

and viewing histograms.

•	 Comet.ml: This is a cloud-based service that allows you to track code, experiments, and 

results automatically across various ML libraries and frameworks.



Chapter 2 53

While these tools are powerful, AML provides a comprehensive and integrated environment that 

can leverage these tools while adding unique capabilities, especially when using the AML CLI 

for seamless integration. In the setup that follows, we will learn how to use MLflow for logging 

and tracking model KPIs.

Setting up MLflow tracking with AzureML CLI v2
To effectively use AML for experiment tracking, let’s use MLflow for this example. Follow these 

steps:

1.	 Integrate with Mlflow. AML can act as a backend for MLflow, allowing you to store all 

your logs and metrics in Azure while using MLflow’s simple APIs.

2.	  Configure MLflow to use AML as its tracking URI:

```python
import mlflow

mlflow.set_tracking_uri(
 "azureml://northcentralus.api.azureml.ms/mlflow/v1.0/"
 "subscriptions/your_subscription_id/"
 "resourceGroups/your_resource_group/"
 "providers/Microsoft.MachineLearningServices/"
 "workspaces/your_workspace_name"
)
mlflow.set_experiment("your_experiment_name")
```

3.	 Run and track experiments. Use the Azure CLI to run your experiments and automatically 

log metrics, parameters, and artifacts:

```

az ml job create --file experiment.yml

```

4.	 Monitor and manage these experiments directly from your AML workspace.

Comparing jobs in an experiment
After running multiple jobs and evaluating their performance based on KPIs, the best-performing 

model is identified. This model, which has demonstrated superior metrics in terms of accuracy, 

precision, recall, or other relevant criteria, is deemed ready for business use and deployment. The 

next steps involve registering this model with AML to ensure it is available for deployment and 

can be easily managed and monitored.



Training and Experimentation54

To achieve this, you can use AML CLI commands to locate the best model from the job outputs 

and officially register it within the workspace. The following advantages highlight the benefits 

of comparing jobs within an experiment:

•	 Visual comparison: AML Studio offers powerful visualization tools to help you compare 

different experiments. By plotting metrics such as loss, accuracy, and other custom 

indicators against each other, you can easily identify the most promising models. This 

visual comparison simplifies the process of analyzing multiple jobs and selecting the 

best model.

•	 Statistical analysis: AML also provides tools for performing statistical analysis and 

generating reports that compare different experiments. These capabilities enable you to 

make data-driven decisions by thoroughly evaluating the performance and reliability of 

each model.

•	 Streamlined job comparison: It is simpler and easier to visually examine the jobs within 

an experiment, select the most interesting ones, and perform a detailed comparison to 

identify the best model.

The following example demonstrates how to use the AML Studio and CLI for this purpose. Here 

are the steps for the visual comparison in AML Studio:

1.	 Navigate to the AML Studio.

2.	 Open the experiment you are interested in.

3.	 Use the built-in visualization tools to compare metrics such as loss, accuracy, precision, 

recall, and so on.

The following figure is a view of an experiment with multiple job runs:

Figure 2.9 – Jobs inside an experiment from the AML Studio portal



Chapter 2 55

The following figure compares the jobs from the preceding figure across some of the metrics:

Figure 2.10 – Comparing models by different metrics

The CLI currently does not provide a direct way to achieve a similar approach. However, that does 

not limit us from creating a simple script to achieve the same using the CLI:

#!/bin/bash

# Experiment name

EXPERIMENT_NAME="my-first-experiment"

# List all jobs in the experiment

JOB_NAMES=$(az ml job list --experiment-name $EXPERIMENT_NAME --query "[].
name" -o tsv)

# Initialize an empty array to hold job metrics

declare -A job_metrics

# Loop through each job and retrieve metrics

for JOB_NAME in $JOB_NAMES; do

    METRICS=$(az ml job show --name $JOB_NAME --query metrics)

    job_metrics[$JOB_NAME]=$METRICS

done



Training and Experimentation56

# Compare metrics (example: comparing accuracy)

for JOB_NAME in "${!job_metrics[@]}"; do

    ACCURACY=$(echo ${job_metrics[$JOB_NAME]} | jq '.accuracy')

    echo "Job: $JOB_NAME, Accuracy: $ACCURACY"

done

# Add additional comparison logic as needed

Here is an explanation of what the preceding code block represents:

•	 Listing jobs: The script first lists all jobs in the specified experiment.

•	 Retrieving metrics: It then loops through each job and retrieves its metrics using the az 

ml job show command.

•	 Comparing metrics: Finally, it prints out the accuracy for each job. You can modify the 

script to compare other metrics or implement more complex comparison logic.

Register the best model based on metrics
After running the script and identifying the best model based on the metrics, you can register 

the model as follows:

BEST_JOB_NAME="job-with-highest-accuracy"

az ml model create --name my_best_model --version 1 --path azureml://
jobs/$BEST_JOB_NAME/outputs/artifacts

This approach provides a flexible way to compare job metrics across different jobs within an 

experiment using the AML CLI and simple scripting.

Optimizing models
Once you have identified the best-performing model based on your evaluation metrics, the next 

critical step in your ML pipeline is hyperparameter tuning. While selecting a model is essential for 

understanding which algorithm works best for your data, optimizing this model’s performance 

requires fine-tuning its hyperparameters. This process, known as hyperparameter tuning, can 

significantly enhance the effectiveness and predictive power of your model. Let’s explore various 

techniques to achieve optimal performance.



Chapter 2 57

Hyperparameter tuning
In ML, the distinction between hyperparameters and model parameters is crucial. Model 

parameters are learned from data automatically during the training process and are integral to the 

model’s ability to make predictions. In contrast, hyperparameters are the settings predetermined 

by the ML engineer before training begins. These settings might include the learning rate, the 

number of hidden layers in a neural network, or the number of trees in a random forest.

Hyperparameter tuning is essential because the right hyperparameter settings can dramatically 

improve model performance. Conversely, poorly chosen hyperparameters can result in models 

that fail to learn effectively, regardless of algorithm sophistication or data quality.

Tuning techniques
Several techniques are available for hyperparameter tuning, each with its own advantages:

•	 Grid search: This method involves exhaustively searching through a manually specified 

subset of the hyperparameter space. It’s straightforward but can be computationally 

expensive.

•	 Random search: This technique samples hyperparameter settings randomly. It is often 

more efficient than grid search, as it can find good configurations with fewer trials.

•	 Bayesian optimization: This method builds a probabilistic model of the function mapping 

from hyperparameter values to the target evaluated on a validation set. It then uses this 

model to select the most promising hyperparameters to evaluate the true objective 

function.

•	 Automated methods such as AutoML: Tools such as Azure’s AutoML automate the 

selection and tuning of hyperparameters, greatly simplifying the ML pipeline.

Sweep jobs
Sweep jobs in AML are designed to facilitate the hyperparameter tuning process by automating 

the search for the best-performing hyperparameter configurations. They systematically explore 

the hyperparameter space using various sampling algorithms and early termination policies to 

efficiently identify optimal settings. This automated approach not only saves time but also ensures 

more robust model performance by leveraging advanced techniques such as random sampling, 

Bayesian optimization, and bandit policies.



Training and Experimentation58

Example using the CLI
Let’s walk through an example of hyperparameter tuning using the AML CLI, focusing on a 

sample ML model:

1.	 First, define your environment and dependencies:

```yaml

conda_dependencies.yml

dependencies:

 - python=3.11

 - scikit-learn

 - pip:

 - azureml-defaults

```

2.	 Then, prepare the training script. Include a train.py Python script that uses scikit-learn 

to train a logistic regression model on the Iris dataset. The script should be set to accept 

hyperparameters as arguments.

3.	 Next, set up the sweep job configuration. AML’s sweep job is used to automate 

hyperparameter tuning. Configure it to use random parameter sampling and a bandit 

policy for early termination of poorly performing runs:

# sweep_job_config.yml

$schema: https://azuremlschemas.azureedge.net/latest/sweepJob.
schema.json

type: sweep

experiment_name: sweep-test

trial:

  code:

    local_path:

  command: >

    python train.py --C {search_space.C} --max_iter {search_space.
max_iter}

  environment: azureml:my-conda-env:1

search_space:

  C: uniform(0.1, 1.0)

  max_iter: choice(100, 150, 200)

sampling_algorithm: random

early_termination:



Chapter 2 59

  type: bandit

  evaluation_interval: 2

  slack_factor: 0.1

objective:

  primary_metric: accuracy

  goal: maximize

compute: azureml:cpu-cluster

The following figure is a simpler translation of the preceding YAML; think of it as a 

mechanism that runs multiple jobs with different parameters to find the best-performing 

combination. Notice the loop component in Figure 2.11.

Figure 2.11 – Sweep job with hyperparameter tuning

4.	 Run the sweep (hyperparameter tuning) job by executing the tuning using the AML CLI:

az ml job create ……..

Once your sweep job has completed and the best-performing hyperparameters have been 

identified, the next step is to evaluate the model’s performance thoroughly and iterate to refine 

your experiments for production readiness.



Training and Experimentation60

Evaluation and iteration
After running hyperparameter tuning, it’s crucial to evaluate the effectiveness of different settings 

to ensure that the model achieves optimal performance and to identify the most promising 

hyperparameter combinations. AML provides tools to visualize and analyze the results of sweep job 

experiments, allowing you to compare the performance of different hyperparameter combinations.

This is an iterative process and, based on the results, you might choose to refine the search space 

or adjust the tuning algorithm to focus on more promising areas of the hyperparameter space. 

This visualization demonstrates the results of a sweep job with various hyperparameter settings: 

the performance metrics for each child job.

Figure 2.12 – Child jobs of a sweep job with hyperparameters

Note

We understand that the introduction of new concepts such as sweep jobs and YAML 

schemas may seem overwhelming, especially for those focused on DevOps and cloud 

engineering. However, think of these configurations as lines of code that will be 

checked into a code base. Most of the detailed work will be handled by data scientists. 

The reason these topics are discussed here is to provide you with a high-level under-

standing, ensuring you are well prepared to collaborate effectively in a cross-func-

tional team.



Chapter 2 61

AML provides a comprehensive suite of tools for managing and optimizing ML experiments, 

from data preparation and hyperparameter tuning to model evaluation and deployment. By 

leveraging these capabilities, teams can ensure their models are robust, reproducible, and ready 

for deployment in real-world applications. For hands-on practice and advanced scenarios, it 

is recommended to check the GitHub samples here: https://github.com/Azure/azureml-

examples/tree/main/cli/jobs.

Summary
This chapter has provided a comprehensive overview of the foundational stages of ML model 

development: creating and managing workspaces, designing and conducting simple experiments, 

tracking and comparing these experiments, and optimizing models through hyperparameter 

tuning.

We explored how to set up these workspaces using tools such as the AML CLI, emphasizing 

best practices in environment configuration and version control. We then proceeded to design 

and implement simple experiments, using AML to streamline the process of model testing and 

evaluation. This section underscored the importance of systematic experiment management, 

which facilitates easier scaling and reproducibility.

Finally, we delved into hyperparameter tuning, exploring various techniques and their 

implementations within the AML framework. This is a critical step in refining model performance 

and ensuring that the chosen models are the best fit for their intended tasks.

By applying the principles learned in this chapter, you will be well prepared for the challenges 

of deploying robust, efficient, and effective ML systems. In the next chapter, we will use these as 

the building blocks for automation and reproducibility (the core principles of DevOps/MLOps) 

in the next chapter.

Tools documentation
Deepen your practical knowledge by referring to the official documentation of the tools and 

libraries discussed in this chapter:

•	 AML CLI documentation: https://docs.microsoft.com/en-us/azure/machine-

learning/

•	 MLflow documentation: https://mlflow.org/docs/latest/index.html

•	 TensorBoard documentation: https://www.tensorflow.org/tensorboard/

•	 Scikit-learn user guide: https://scikit-learn.org/stable/user_guide.html

https://github.com/Azure/azureml-examples/tree/main/cli/jobs
https://github.com/Azure/azureml-examples/tree/main/cli/jobs
https://docs.microsoft.com/en-us/azure/machine-learning/
https://docs.microsoft.com/en-us/azure/machine-learning/
https://mlflow.org/docs/latest/index.html
https://www.tensorflow.org/tensorboard/
https://scikit-learn.org/stable/user_guide.html




Part 2 
Implementing MLOps

This part takes you beyond experimentation into the systematic operationalization of ML models 

at scale. It covers critical aspects of MLOps workflows, including model registration, packaging, 

and deployment, empowering you to confidently deliver models for both batch scoring and real-

time services. You will learn how to capture and secure governance data, ensuring compliance 

and traceability throughout the ML lifecycle, and implement monitoring and alerting systems to 

maintain performance and reliability in production. By the end of this part, you will be equipped to 

manage models robustly in live environments, ensuring that they deliver value while maintaining 

quality, compliance, and operational excellence.

This part has the following chapters:

•	 Chapter 3, Reproducible and Reusable ML

•	 Chapter 4, Model Management (Registration and Packaging)

•	 Chapter 5, Model Deployment: Batch Scoring and Real-Time Web Services

•	 Chapter 6, Capturing and Securing Governance Data for MLOps

•	 Chapter 7, Monitoring the ML Model

•	 Chapter 8, Notification and Alerting in MLOps





3
Reproducible and Reusable ML

This chapter builds upon the concepts introduced in Chapter 2, focusing on automating the 

machine learning (ML) lifecycle for robust and efficient model development and deployments. 

Reproducibility and reusability are fundamental principles in ML to ensure the reliability and 

efficiency of your projects. Reproducibility allows you to recreate the same results consistently, 

which is essential for verifying experiments and building trust in your models. Reusability enables 

you to leverage existing components and workflows, saving time and resources while maintaining 

consistency across different projects.

This chapter delves into strategies for automating a typical ML workflow, with a strong emphasis 

on enhancing debuggability, reproducibility, and reusability. Key topics include an exploration of 

the importance of reproducibility and reusability within the ML lifecycle and how they contribute 

to robust and scalable solutions. The chapter also covers the construction, management, and 

automation of ML pipelines using Azure ML (AML), providing insights into defining and reusing 

pipeline components effectively. It further demonstrates how GitHub Actions can be integrated to 

automate various ML processes. Additionally, the chapter discusses the significance of managing 

isolated ML environments within AML and offers best practices and tools for dependency 

management to ensure consistent and reliable setups across different stages of development.

We will cover the following main topics:

•	 Defining repeatable and reusable steps for data preparation, training, and scoring

•	 Learning about components and pipelines in AML

•	 Tracking and reproducing software dependencies in projects

•	 Hands-on example – Building an ML pipeline with the AML CLI, Git, and GitHub Actions



Reproducible and Reusable ML66

By the end of this chapter, you will have a comprehensive understanding of how to create 

reproducible and reusable ML workflows, ensuring robust and efficient deployments. These 

practices are essential for managing complexity as ML projects scale, enabling seamless 

collaboration between data scientists and DevOps engineers. Building on the foundation 

from Chapter 2, you’ll see how automation with shared components not only streamlines your 

development but also makes your ML solutions production-ready and maintainable in real-world 

environments.

Defining repeatable and reusable steps for data 
preparation, training, and scoring
In the previous chapter, we introduced a basic ML workflow as shown in Figure 3.1. However, it is 

very common that in enterprises, those different parts are controlled by different subject matter 

experts (SMEs). So, if we place the SMEs in the respective workflow stages, the transformation 

would look like this:

Figure 3.1 – Collaboration and reusability in MLOps



Chapter 3 67

As the complexity grows as more data is added, and across the other steps in the MLOps process 

(Figure 3.1), it becomes essential to have SMEs focus on different parts. So, reusability, sharing, 

versioning, and a lot of other DevOps concepts are very useful here. In this chapter, we will 

gradually start building up toward automating the whole workflow.

To decipher the aforementioned stages, let’s break them apart and try to understand the high-

level substages that can be authored and managed by respective SMEs:

1.	 Data acquisition: This stage automates fetching data from various sources. AML pipelines 

offer pre-built components for common data sources such as the following:

•	 Azure Blob Storage

•	 Azure Data Lake Storage (ADLS)

•	 SQL databases

•	 External cloud storage (for example, Amazon Web Services Simple Storage 

Service (AWS S3))

•	 Public datasets (UCI Machine Learning Repository)

Example: You can define a step that reads a specific dataset from your Azure Blob Storage 

account. The component would take the storage container name and blob file path as 

inputs and output the loaded data as a DataFrame.

2.	 Data preprocessing: This stage automates cleaning, transforming, and preparing your data 

for model training. AML pipelines offer components for various preprocessing techniques:

•	 Cleaning: Handling missing values, outliers, and inconsistencies

•	 Normalization: Scaling numerical features to a common range

•	 Feature engineering: Creating new features from existing ones to improve model 

performance

Example: You can define a step that removes missing values from specific columns, then 

normalizes numerical features using a min-max scaling technique. This component would 

take the DataFrame as input and output the preprocessed DataFrame.

3.	 Model training: This stage automates the training process for your chosen ML model. 

AML pipelines integrate with various ML  frameworks such as scikit-learn, TensorFlow, 

and PyTorch.



Reproducible and Reusable ML68

Example: You can define a step that trains a classification model using a pre-built algorithm 

(for example, Logistic Regression) and hyperparameters you specify (for example, learning 

rate, regularization). The component would take the preprocessed DataFrame, algorithm 

choice, and hyperparameters as inputs and output the trained model.

4.	 Model evaluation: This stage automates evaluating the performance of the trained model 

using various metrics. AML pipelines offer components for calculating metrics such as 

the following:

•	 Accuracy (classification)

•	 Mean Squared Error (MSE) (regression)

•	 F1-score (classification)

Example: You can define a step that calculates the accuracy score on a held-out test set. The 

component would take the trained model and test data as inputs and output the accuracy 

score as a metric. Pipelines can also involve components for comparing multiple models 

based on their evaluation metrics to choose the best-performing one.

5.	 Model deployment: This stage automates deploying the trained model to a production 

environment for real-world use. AML offers options for deployment to the following:

•	 AML service endpoints for web service API access

•	 Azure Kubernetes Service (AKS) for containerized deployments

Example: You can define a step that deploys the chosen model to an AML service endpoint. 

The component would take the trained model as input and configure the endpoint for 

receiving scoring requests.

By defining these stages as reusable parts in your AML workflow, you gain several benefits:

•	 Consistency: The same preprocessing steps are applied each time the workflow runs, 

ensuring consistent data preparation for training.

•	 Efficiency: You avoid writing repetitive code for common tasks, saving development time.

•	 Maintainability: Changes to a component can be easily applied across all workflows 

that use it.

By leveraging these reusable parts, you can build a robust and scalable end-to-end ML workflow 

that streamlines your development process and ensures reliable model performance.

This is a good point in the chapter to introduce the concept of a pipeline, using Figure 3.1 to 

illustrate how each reusable step in the ML workflow maps to a component within the pipeline.



Chapter 3 69

Learning about components and pipelines in AML
The concepts of reproducibility, reusability, and sharing are achieved by AML pipelines. ML 

pipelines are workflows built using interconnected components (see the next section) that 

automate the entire ML lifecycle. These components represent specific stages within the pipeline, 

allowing you to manage and track each step independently.

Components
Imagine a building with Lego bricks. Each Lego brick is a small, independent component. You can 

snap these components together in different ways to build all sorts of things – a car, a spaceship, 

a robot!

Similarly, AML pipelines have pre-built components that act like Lego bricks for your ML project. 

These components handle specific tasks, such as loading data, cleaning data, training a model, 

or putting the model to use (scoring).

Just like you wouldn’t build a whole spaceship with just one type of Lego, you wouldn’t build an 

entire ML pipeline with just one component. You connect these pre-built components together 

in the order you need to complete each step of your project.

Some other ways to understand components are as follows:

•	 Think of components as tools for specific jobs: Each component has a specific task within 

an MLOps pipeline. These steps could be one of the following: collect and clean data, train, 

score, evaluate a model, deploy a model, and so on. So, essentially, each step could be a 

component.

•	 Reuse components to save time: You can reuse the same component in multiple pipelines, 

just like you can reuse the same Lego brick in different builds.

•	 Connect components to create a workflow: You snap the components together, just like 

Lego bricks, to define the order of steps in your ML project.

AML components themselves aren’t directly written in code you might typically see (such as 

Python or R). However, they are defined using YAML, which is a human-readable way to define 

configurations, and from the YAML, it references some code/script, which does the heavy lifting.

Here’s a simplified example to give you an idea:

name: prep_data

version: 1

display_name: Prep Data



Reproducible and Reusable ML70

description: Convert data to CSV file, and split to training and test data

inputs:

  input_data:

    type: uri_folder

    optional: false

outputs:

  training_data:

    type: uri_folder

  test_data:

    type: uri_folder

code: ./prep_data.py

environment: azureml:environment_name:environment_version

command: >

  python prep_data.py

  --input_data ${{inputs.input_data}}

  --training_data ${{outputs.training_data}}

  --test_data ${{outputs.test_data}}

The code file could be something like this:

import argparse

import os

import pandas as pd

from sklearn.model_selection import train_test_split

def parse_args():

    parser = argparse.ArgumentParser(

        description="Convert data to CSV file, and split to training and

        test data"

    )

    parser.add_argument(

        '--input_data',

        type=str,

        help='Path to the input data',

        required=True



Chapter 3 71

    )

    parser.add_argument(

        '--training_data',

        type=str,

        help='Path to the output training data',

        required=True

    )

    parser.add_argument(

        '--test_data',

        type=str,

        help='Path to the output test data',

        required=True

    )

    return parser.parse_args()

def main():

    args = parse_args()

 

    # Read input data

    input_data_path = args.input_data

    input_files = [

        os.path.join(input_data_path, f)

        for f in os.listdir(input_data_path)

        if f.endswith('.csv')]

 

    # Concatenate all input CSV files

    dataframes = [pd.read_csv(f) for f in input_files]

    data = pd.concat(dataframes, ignore_index=True)

 

    # Split data into training and test sets

    train_data, test_data = train_test_split(

        data,

        test_size=0.2,

        random_state=42

    )

 

    # Create output directories if they don't exist

    os.makedirs(args.training_data, exist_ok=True)



Reproducible and Reusable ML72

    os.makedirs(args.test_data, exist_ok=True)

 

    # Save training data

    train_output_path = os.path.join(args.training_data, 'train_data.csv')

    train_data.to_csv(train_output_path, index=False)

 

    # Save test data

    test_output_path = os.path.join(args.test_data, 'test_data.csv')

    test_data.to_csv(test_output_path, index=False)

 

    print(f"Training data saved to {train_output_path}")

    print(f"Test data saved to {test_output_path}")

if __name__ == '__main__':

    main()

Then, you can run the CLI command to create this component so that it can be reused:

az ml component create --file prep_data_component.yaml --resource-group 
my-resource-group --workspace-name my-workspace

Once you create this component, this will show up in the Azure Studio portal as depicted in Figure 

3.2. It shows a component named Prep Data that takes one input and splits it into two outputs 

with their corresponding types.

Figure 3.2 – Component representation

This YAML defines a component named DataReader that takes an input parameter named 

dataset_name (as a string). The component then runs a script named download_data.py and 

passes dataset_name as an argument using ${{inputs.dataset_name}}. The output of the 

component is a dataset named dataframe.



Chapter 3 73

These are the key features of components, as we understand them so far:

•	 Components are defined in YAML files, not traditional programming languages.

•	 They specify inputs, outputs, and the script to run for that specific step.

•	 Inputs and outputs allow components to connect and share data between them.

While you don’t directly code the components themselves, understanding this structure is helpful 

for building and using pipelines in AML. You’ll typically be working with pre-built components 

and configuring them for your specific needs.

Pipelines
You define a pipeline by connecting these components in the desired order to achieve a goal. The 

whole process shown in Figure 3.1 could be a pipeline.

By using reusable components, you can build complex ML pipelines without starting from scratch 

every time. It’s like having a toolbox full of handy tools to build and automate your ML projects! 

Pipelines have the following benefits:

•	 Automation: Once defined, the pipeline can be triggered automatically on various events, 

such as new data arrival, code updates, or scheduled intervals.

•	 Azure integration: AML pipelines seamlessly integrate with other Azure services such 

as Data Storage, Compute resources, and Container Registry for streamlined data access, 

scalable model training, and consistent environment management throughout the ML 

lifecycle.

•	 Reproducibility: AML pipelines guarantee consistent results by ensuring the same 

steps are executed every time the pipeline runs. This is crucial for maintaining model 

performance and avoiding regressions.

•	 Reusability: Components within pipelines can be reused across different projects, saving 

time and development effort. You can build modular pipelines by combining reusable 

components for specific tasks.

•	 Scalability: AML pipelines can handle complex workflows and large datasets efficiently. 

Scaling compute resources becomes easier as pipelines can leverage distributed training 

capabilities.

•	 Interconnectivity: Components are connected to define the workflow, ensuring that the 

output of one component serves as the input for the next. This helps SMEs bring in their 

knowledge of components and stitch them together to achieve a greater goal.



Reproducible and Reusable ML74

•	 Monitoring and tracking: AML provides comprehensive monitoring and tracking features 

for pipelines. You can track the execution status of each step, view logs, and analyze 

metrics to identify potential issues.

By leveraging ML pipelines in AML, you can streamline your ML development process, ensure 

consistent and reliable results, and achieve efficient model deployment at scale. The following 

figure shows what a pipeline looks like from the designer view (AML portal).

Figure 3.3 – AML pipeline designer view

Let’s walk through the pipeline:

•	 Data input: At the top left, there is a component labeled Data that serves as the initial 

input source. This component holds the raw dataset that will be used for the ML pipeline.

•	 Data preparation: The raw data from the Data component flows into the prep_job 

component.



Chapter 3 75

The prep_job component is responsible for preparing the data. This could involve cleaning 

the data, handling missing values, or performing initial preprocessing steps. The output 

from this step is labeled prep_data.

•	 Data transformation: The prepared data (prep_data) is then passed to the transform_job 

component.

The transform_job component further processes the data, possibly including feature 

engineering, normalization, or other transformations to make it suitable for model training. 

The output from this step is labeled transformed_data.

•	 Model training: The transformed data is then passed to the train_job component.

The train_job component is responsible for training the ML model using the prepared 

dataset. This component outputs the trained model (model_output) and test data (test_

data).

•	 Model prediction: The trained model (model_output) and the test data are fed into the 

predict_job component.

The predict_job component uses the trained model to make predictions on the test data. 

The output from this step is the predictions (predictions).

•	 Model scoring: Finally, the predictions and model are passed to the score_job component.

The score_job component evaluates the model’s performance by comparing the 

predictions with the actual values in the test data. The result of this step is a score report 

(score_report), which provides metrics on the model’s accuracy, precision, recall, and 

so on.

By utilizing AML pipelines, you can streamline and automate your ML workflows, ensuring 

reproducibility, scalability, and efficient collaboration across different stages of your ML project. 

This visual representation in the designer view helps in understanding the flow of data and the 

sequence of operations, making it easier to manage and optimize the ML pipeline.

For automation, ensuring consistent and reproducible results is paramount. This is where isolated 

reproducible environments come into play. They act as controlled sandboxes where software 

dependencies and configurations are explicitly defined, guaranteeing a predictable execution 

environment for your ML projects.



Reproducible and Reusable ML76

Understanding ML environments
Here are some of the benefits of isolated environments:

•	 Reproducibility – consistent software dependencies: Imagine training a fantastic 

model, but when you deploy it to production, something goes wrong! Often, the culprit 

is inconsistent software dependencies. Different environments (development machine, 

training cluster, production server) might have different versions of libraries or packages. 

This inconsistency can lead to unexpected behavior and hinder reproducibility.

Isolated environments to the rescue: By using isolated environments, you define the exact 

versions of all software dependencies (libraries, frameworks) needed for your project. This 

ensures that the same environment is used for training, testing, and deployment, leading 

to consistent and reproducible results.

Example: Let’s say your model relies on a specific version of scikit-learn (for example, 

scikit-learn==1.1.2). An isolated environment would ensure that this exact version is 

used in all stages of your pipeline, from development to deployment.

•	 Experimentation – isolating different model versions: During ML development, you 

often experiment with different model architectures or hyperparameter configurations. 

Isolated environments are instrumental in managing these experiments effectively.

Isolating experiments: Each experiment can have its own isolated environment, ensuring 

that different model versions don’t interfere with each other or corrupt dependencies. This 

allows for clean comparisons and facilitates the selection of the best-performing model.

Example: You might be trying two different neural network (NN) architectures for your 

image classification task. Each architecture can have its own isolated environment with 

the specific libraries and configurations needed for training and evaluation.

•	 AML environments: AML offers a robust environment management system that simplifies 

defining and utilizing isolated environments for your ML projects. It works by specifying 

environments with YAML. AML environments are defined using YAML files. These files 

specify the exact versions of all software dependencies needed for your project and become 

a blueprint for creating consistent environments across your development and deployment 

stages.



Chapter 3 77

The following is an example YAML for an environment:

name: my_aml_environment

channels:

  - conda-forge

dependencies:

  - python=3.8

  - scikit-learn==1.1.2

  - pandas==1.4.2

•	 Creating isolated compute clusters: AML allows you to create isolated compute clusters 

with preconfigured environments. This ensures that all compute resources within the 

cluster have the same software dependencies, guaranteeing consistent training and 

deployment across machines.

By leveraging isolated environments with AML, you gain several advantages:

•	 Reproducible results: Consistent software dependencies across your ML lifecycle

•	 Efficient experimentation: Easy isolation and comparison of different model versions

•	 Streamlined development: Simplified environment management with YAML 

configurations

Overall, isolated environments are a cornerstone of robust ML development. By ensuring consistent 

software dependencies and facilitating experimentation, they empower you to build reliable and 

reproducible models.

To further enhance your understanding of managing dependencies, it’s important to delve into 

techniques for tracking and reproducing software dependencies in projects.

Tracking and reproducing software dependencies in 
projects
Dependency management in ML involves specifying and controlling external libraries and 

packages that your code relies on to ensure consistency, reproducibility, and smooth collaboration 

across different environments. This process helps avoid conflicts and unexpected behavior caused 

by mismatched or missing dependencies.

Next, we will delve into tools for managing these dependencies and the importance of building 

reproducible environments.



Reproducible and Reusable ML78

Python offers two primary tools for managing dependencies:

•	 conda: Often used for scientific computing, conda manages environments and packages 

within a virtual environment. This allows you to isolate project dependencies from your 

system-wide Python installation.

•	 pip: The default package installer for Python, pip works best for installing individual 

packages within an existing environment.

Imagine building a complex ML model, but when a colleague tries to run it, they encounter errors 

due to missing or outdated dependencies. This is where the following files come in handy; they 

contain a list of the exact Python packages to be installed for running the code:

•	 requirements.txt (pip): This file lists all the necessary packages and their specific versions 

required for your project. Anyone with Python and pip can install these dependencies and 

replicate your environment.

•	 conda.yaml (conda): Similar to requirements.txt, this file specifies the packages and 

their versions needed for your conda environment. This allows for recreating the entire 

environment with all its dependencies.

By leveraging dependency management tools and defining your dependencies in a requirements 

file, you gain several advantages:

•	 Reproducible results: Specifying exact versions ensures everyone uses the same code and 

libraries, leading to consistent and reproducible model behavior.

•	 Simplified collaboration: Sharing your code along with a requirements file allows 

colleagues to easily set up their environment and run your code without encountering 

dependency issues.

•	 Project sharing: Sharing projects with requirements files makes it easier for others to 

understand the dependencies needed and replicate your environment.

•	 Version control: You can version control your requirements file alongside your code, 

ensuring everyone uses the same set of dependencies throughout the project lifecycle.

•	 Reduced errors: By explicitly managing dependencies, you minimize the risk of errors 

caused by missing or incompatible libraries.

Dependency management is crucial for building robust ML projects. Tools such as conda and pip, 

along with defining dependencies in a requirements file, help create consistent environments, 

streamline collaboration, and ensure reproducible results. Just as code, configurations, pipelines, 

and components discussed earlier in this chapter are tracked in a Git repository, environments 

are also considered part of the code and configuration. 



Chapter 3 79

In the following section, we will explore how this Git-centric approach supports automating 

MLOps steps using Git and GitHub Actions. A basic example of this is shown in Figure 3.4, which 

demonstrates how GitHub Actions can be used to automate key stages of your AML pipeline:

Figure 3.4 – Triggering ML pipeline using GitHub

You can customize these workflows to fit your specific needs and integrate them seamlessly with 

your code version control using Git. By leveraging Git and GitHub Actions, you can streamline 

your ML development process, ensure consistent and reproducible workflows, and maintain 

control over your code base throughout the deployment lifecycle. In the following section, let’s 

run through a hands-on exercise to explore this process to have a good working grasp.



Reproducible and Reusable ML80

Hands-on example – Building an ML pipeline with 
AML CLI, Git, and GitHub Actions
This example demonstrates building a simple ML pipeline for data download and training a basic 

classification model using the AML CLI, Git, and GitHub Actions.

Here are the prerequisites:

•	 Azure subscription with an AML workspace

•	 Azure CLI installed and configured

•	 Basic understanding of Python and Git

•	 A GitHub account

Here is the scenario:

We’ll create a pipeline that downloads a public dataset (Iris flower classification) and trains a 

simple Logistic Regression model. The pipeline will be triggered automatically upon code changes 

in a Git repository hosted on GitHub.

Here are the steps:

1.	 Create an AML component (YAML): Create a file named download_data.yaml with the 

following content:

name: DownloadData

inputs:

    url: string

    output_path: string

outputs:

    dataframe: Dataset

run_step:

    script_name: download_data.py

    arguments:

        --url: ${{inputs.url}}

        --output_path: ${{inputs.output_path}}

This YAML file defines a component named DownloadData that takes a URL (dataset 

location) and output path as inputs and outputs a loaded dataset (DataFrame).



Chapter 3 81

2.	 Write the download script (Python): Create a file named download_data.py with the 

following content:

import pandas as pd

def main():

    url = "https://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data"

    output_path = "data/iris.csv"

    data = pd.read_csv(url)

    data.to_csv(output_path, index=False)

    print(f"Data downloaded and saved to: {output_path}")

if __name__ == "__main__":

    main()

This Python script downloads the Iris dataset from the specified URL and saves it as a 

CSV file.

3.	 Define a pipeline (YAML): Create a file named train_pipeline.yaml with the following 

content:

description: Train a Logistic Regression model on Iris dataset

steps:

    - name: Download data

      reference: downloads/download_data.yaml

      arguments:

          url: "https://archive.ics.uci.edu/ml/machine-
learning-          databases/iris/iris.data"

          output_path: "data/iris.csv"

    - name: Train model

      script_mode: PythonScript

      source_directory: train_script

      script_arguments: ["data/iris.csv"]



Reproducible and Reusable ML82

This defines a pipeline with two steps:

•	 The first step references the DownloadData component we created

•	 The second step trains the model using a Python script located in the train_script 

directory (we’ll create this script next)

4.	 Create a training script (Python): Create a directory named train_script and a file 

named train_model.py within it, with the following content:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

def main(data_path):
    data = pd.read_csv(data_path)

    X = data.drop("target", axis=1)
    y = data["target"]

    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2
    )

    model = LogisticRegression()
    model.fit(X_train, y_train)

    # Save the model
    # (you can implement model registration with Azure ML here)
    # ...

    print("Model training complete!")

if __name__ == "__main__":
    import sys
    data_path = sys.argv[1]
    main(data_path)

This script loads the downloaded data, splits it into training and testing sets, trains a 

Logistic Regression model, and saves it (model registration with AML can be integrated 

here).



Chapter 3 83

5.	 Initialize a Git repository:

1.	 Open a terminal and navigate to your project directory.

2.	 Initialize a Git repository using git init.

3.	 Add all your files (download_data.yaml, download_data.py, train_pipeline.

yaml, train_script/train_model.py).

6.	 Create a GitHub repository: Go to GitHub and create a new repository for your project.

7.	 Push code to GitHub: Add the initialized Git repository as a remote to your local repository:

git remote add origin 

git@github.com:<username>/<repository_name>.git

8.	 Replace <username> with your GitHub username and <repository_name> with the name 

you chose for your repository.

9.	 Commit your changes and push them to the remote repository:

git add .

git commit -m "Initial commit"

git push origin main

10.	 Create a GitHub Actions workflow:

1.	 Go to your GitHub repository settings and navigate to the Actions tab.

2.	 Click on New workflow and choose Set up a workflow yourself.

3.	 Create a new YAML file named github/workflows/aml_pipeline.yml with the 

following content:

name: Train ML Pipeline

on:

  push:  # Trigger on code push to any branch

jobs:

  train_and_deploy:

    runs-on: ubuntu-latest

    steps:

      -name:  Checkout repo

      - uses: actions/checkout@
v2  # Checkout code from repository



Reproducible and Reusable ML84

      # Login to Azure (replace with your credentials)

      - name: Login to Azure

        uses: Azure/login@v2

        with:

          clientId: ${{ secrets.AZURE_CLIENT_ID }}

          clientSecret: ${{ secrets.AZURE_CLIENT_SECRET }}

          tenantId: ${{ secrets.AZURE_TENANT_ID }}

      - name: Install Azure CLI

        uses: Azure/setup-cli@v2

      - name: Install Azure ML  CLI

        run: |

          az extension add –n ml

      - name: Run Azure ML  pipeline

        run: |

          az ml workspace list

          # Assuming your workspace name is "myamlworkspace"

          # and resource group is "myresourcegroup"

          az ml job create -n train_pipeline \

              -f train_pipeline.yaml \

              -w myamlworkspace \

              -g myresourcegroup

      # Additional steps for model registration with 

Azure ML      # can be added here

Let’s now look at an explanation of the workflow:

•	 This workflow is triggered whenever there’s a push to any branch in your repository

•	 The workflow uses pre-built actions for the following:

•	 Checking out code from the repository

•	 Logging in to Azure using secrets stored in GitHub (replace placeholders with 

your credentials)

•	 Optionally installing Azure CLI if not pre-installed

•	 The workflow runs Azure CLI commands to do the following:

•	 List available AML workspaces (for verification)



Chapter 3 85

•	 Create an ML pipeline using the train_pipeline.yaml file you defined earlier 

(replace placeholders with your actual workspace name and resource group name)

To execute this GitHub pipeline action, we will first configure Azure credentials as secrets. Here’s 

how:

1.	 Go to your GitHub repository settings | Secrets | Actions.

2.	 Create three new secrets:

•	 AZURE_CLIENT_ID: Your Azure service principal client ID

•	 AZURE_CLIENT_SECRET: Your Azure service principal client secret

•	 AZURE_TENANT_ID: Your Azure tenant ID

Next, we will push changes and observe the pipeline run by following these steps:

1.	 Push your changes to the GitHub repository using git push origin main.

2.	 Navigate to the Actions tab in your GitHub repository. You should see a new workflow 

run triggered by your recent push.

3.	 If successful, the workflow log will show the pipeline creation process using Azure CLI 

commands.

By implementing this workflow, you’ve automated the pipeline execution process. Whenever 

you make changes to your code (data download script, training script, or pipeline definition), 

the pipeline will automatically be recreated and will potentially retrain the model based on the 

latest code. This setup promotes a more streamlined and automated development workflow for 

your ML projects.

Note

This is a basic example to showcase the integration between Git, GitHub Actions, 

and the AML CLI for triggering pipeline execution. You might need to adjust the 

workflow depending on your specific environment and desired functionalities. More 

examples of MLOps pipelines can be found in the AML sample notebook repository 

(https://github.com/Azure/MachineLearningNotebooks/tree/master/how-

to-use-azureml/machine-learning-pipelines/intro-to-pipelines).

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines


Reproducible and Reusable ML86

Summary
This chapter emphasized the significance of automation and environment management for 

building robust and reusable ML workflows. By leveraging ML pipelines, Git, GitHub Actions, 

and AML environments, you can effectively streamline ML development and ensure consistent, 

repeatable results across your projects. We learned how to define repeatable and reusable steps 

for data preparation and training, ensuring consistency and efficiency. We also delved into the 

importance of managing ML environments to maintain reproducibility and track dependencies. 

Now, as we move forward, it’s time to focus on another crucial aspect of MLOps: model 

management. Just as a well-built house requires a strong foundation, a successful ML project 

needs a robust model management strategy. In Chapter 4, we will explore the core practices of 

model management, including registration and packaging.

Join the CloudPro Newsletter with 44000+ 
Subscribers
Want to know what’s happening in cloud computing, DevOps, IT administration, networking, 

and more? Scan the QR code to subscribe to CloudPro, our weekly newsletter for 44,000+ tech 

professionals who want to stay informed and ahead of the curve.

https://packt.link/cloudpro

https://packt.link/cloudpro


4
Model Management 
(Registration and Packaging)

In the previous chapter, we explored techniques for automating machine learning pipelines using 

the AML CLI. These pipelines often generate a final artifact: the trained machine learning model. 

This model represents the culmination of your project’s efforts, encapsulating the knowledge and 

insights gleaned from your data. As such, it’s critical to effectively manage the model throughout 

its lifecycle to ensure its reliability, maintainability, and successful deployment.

This chapter digs into the world of model management within Azure Machine Learning, focusing 

on the core concept of model registration. We’ll explore how to leverage the AML CLI (v2) to 

seamlessly integrate model registration into your automated MLOps workflows.

By the end of this chapter, you will understand how to effectively manage machine learning 

models in AML, including how to register models with appropriate metadata, choose the right 

model formats, and utilize datastores for storage. You’ll also gain hands-on experience integrating 

model registration into automated pipelines using the AML CLI v2—an essential step toward 

building robust and reproducible MLOps workflows.

This chapter will cover the following topics:

•	 Model metadata

•	 Model registration

•	 Model format

•	 Datastores

•	 Registering models in action



Model Management (Registration and Packaging)88

Model metadata
Metadata refers to the data that provides information about other data. In the context of machine 

learning, metadata includes details about datasets, models, experiments, and the environment 

in which the model was trained and deployed.

Machine learning models are not static entities. They evolve and change over time, often requiring 

retraining, versioning, and careful tracking. Effective metadata management practices are essential 

for several reasons:

•	 Reproducibility: The ability to recreate a specific model version at any point in time is 

crucial for debugging issues, comparing performance across different training runs, or 

retraining with new data. Metadata management ensures that all aspects of the model’s 

lifecycle are documented and can be reproduced.

•	 Governance and control: Metadata management allows you to associate tags, descriptions, 

and other relevant information with your models. This facilitates easy identification and 

control, ensuring responsible model usage and regulatory compliance.

•	 Scalability and efficiency: By managing metadata in a central repository, you can 

streamline deployment processes. Metadata helps in tracking all versions of your model, 

making them readily available for deployment to various environments, thus simplifying 

scaling and managing multiple deployments.

•	 Version control and rollback: Robust metadata management allows for tracking different 

iterations of your model. If a deployed model encounters issues, you can quickly revert 

to a previous, well-performing version, minimizing downtime and maintaining service 

continuity.

Metadata management using Azure Machine Learning (AML)
Effective machine learning demands meticulous record-keeping of the metadata. AML provides 

robust tools to manage and leverage metadata, ensuring transparency, reproducibility, and 

efficiency in your ML lifecycle. Here’s how AML empowers you to capture, track, and utilize 

essential metadata for informed decision-making:

•	 Capture lineage: AML tracks various aspects of your ML projects using metadata. This 

includes data used for training, the code that trained the model, and the compute resources 

used. This lineage information helps us understand how a model arrived at its predictions.

•	 Version control integration: AML integrates with Git, allowing you to track which code 

repository, branch, and commit were used to train a specific model version.



Chapter 4 89

•	 Data tracking: AML datasets help you manage, profile, and version your data. This ensures 

data quality and traceability throughout the ML lifecycle.

•	 Model interpretability: AML allows you to understand how models make predictions. 

This can aid in debugging, improving fairness, and meeting regulatory requirements.

•	 Model registry: This is the core of metadata management. The model registry acts as a 

central repository to store and track registered models. It captures metadata associated 

with each model version, including the following:

•	 Training experiment details

•	 Deployment information (where it’s deployed)

•	 Model performance metrics

•	 User-defined tags for searchability

With a comprehensive understanding of your ML project’s metadata in place, the next critical 

step is to effectively manage and version your trained models. Model registration serves as the 

cornerstone of this process, providing a structured approach to store, track, and deploy your 

models.

Model registration
Model registration refers to the process of uploading your trained model and its associated 

metadata to the Azure Machine Learning workspace. This creates a managed copy of your model 

within the service, allowing for centralized storage, version control, and simplified access to 

deployment tools.

The Azure Machine Learning CLI (v2) provides a powerful tool for registering models with a 

single, user-friendly command: az ml model create. This command streamlines the registration 

process, allowing you to specify the following:

•	 Model name: This is a unique identifier for your model within the workspace.

•	 Model path: This is the location of your trained model files (local storage, Azure Blob 

Storage, etc.).

•	 Model version: Explicitly define the version of your model for better tracking. This is optional 

because, in the absence of it, the next available version will be created automatically.

•	 Model format: This is optional because the default is custom.

•	 Metadata: Attach additional information such as descriptions, tags, or custom properties 

to enrich your model record. This is optional because this is for information only, not 

directly impacting any operation.



Model Management (Registration and Packaging)90

While model registration within the workspace offers a convenient way to manage models 

associated with specific projects, Azure Machine Learning also offers a dedicated model registry 

service. This service acts as a central hub for storing and managing models across your entire Azure 

Machine Learning environment, offering additional benefits over workspace-based registration, 

such as the following:

•	 Global accessibility: Models registered in the central registry are readily available for 

deployment across all your projects and workspaces within the same Azure subscription.

•	 Enhanced governance: The model registry provides more granular access control options, 

allowing you to define permissions for model usage and deployment at a global level.

•	 Integration with deployment tools: The model registry seamlessly integrates with various 

Azure Machine Learning deployment tools, simplifying the process of deploying registered 

models to production environments.

While this section focuses on workspace-based model registration using the AML CLI v2, the 

concepts translate directly to the model registry service. We will explore the model registry and 

its advanced functionalities in the following section.

AML registry
Let’s learn about the AML registry. In Chapter 2, we discussed the concept of a workspace, which 

is a central hub that contains all compute resources and configurations needed for ML projects. 

A registry, however, is a specialized container specifically designed to store and manage assets.

Workspaces in Azure Machine Learning are usually scoped to specific teams or projects within 

an organization. They provide a dedicated environment where data scientists can experiment, 

train models, and deploy applications. These workspaces are mainly for internal collaboration 

and are not typically designed for sharing assets beyond the team.

To facilitate sharing across teams and workspaces, Azure Machine Learning offers the AML registry. 

This registry serves as a central repository for organization-wide asset management, storing 

models, datasets, environments, and endpoints. It provides a centralized location ideal for sharing 

reusable components across different teams and projects.

Let’s understand the role of the AML registry using a simple example workflow as follows: A data 

science team develops a sophisticated image classification model. After rigorous testing and 

validation, they decide to share the model with other teams within the organization. To achieve 

this, they register the model in the Azure Machine Learning registry. Other teams can then access 

and utilize the registered model for their own applications, without the need to replicate the 

development process.



Chapter 4 91

By leveraging the registry, organizations can foster knowledge sharing, promote code reuse, and 

accelerate ML development across different teams.

Here’s an example of how to create a registry using the CLI:

1.	 First, we will create a .yml file (registry.yml) to contain the details of the registry (e.g., 

which region it will be in):

name: mygreat_registry

location: eastus

description: “My Azure ML Registry”

tags:

“Awesome : Great”

“ML is” : “Fun”

2.	 To create the registry using the CLI, run the following command:

az ml registry create --resource-group my-resource-group --file 
registry.yml

Once this registry is created, it can hold different assets (models, environments, components, 

data). This is what a registry would look like from the AML portal:

Figure 4.1 – AML registry

With the understanding of an AML registry, we now have the option to register this model to a 

workspace or to a registry. But before showing how to register a model, we need to clarify a couple 

of related concepts – model format and datastore.

Let’s go through each one of them before showing some examples of how to register a model 

with different options.



Model Management (Registration and Packaging)92

Model format
Think of a model format as a standardized blueprint for packaging and preserving a machine 

learning model. Just as different products require specific packaging for transportation and storage, 

models need a consistent format for efficient management and deployment.

Standardizing the model format (MLflow)
MLflow is an open source platform that aims to standardize the packaging of machine learning 

models. Here’s what makes it so valuable:

•	 Framework agnostic: MLflow defines a universal format for packaging models, regardless 

of the framework used for training (e.g., scikit-learn, TensorFlow, PyTorch). This ensures 

consistency and interoperability when registering models in tools such as Azure Machine 

Learning.

•	 Comprehensive packaging: The MLflow format goes beyond just the model itself. It 

also encapsulates the model’s dependencies (required libraries and environments) and 

additional artifacts such as input data schemas or example data. This comprehensive 

packaging approach ensures your model can be readily reproduced and deployed across 

different environments without worrying about missing components.

•	 Benefits for MLflow: By leveraging MLflow, you establish a standardized way to store, 

track, and deploy your machine learning models. This simplifies tasks such as version 

control, model lineage tracking, and integration with deployment tools within your MLOps 

workflows.

Here’s an analogy: Imagine building a house (your model). MLflow provides a standardized 

blueprint (packaging format) that captures not just the house structure (model itself) but also 

the materials used (dependencies) and the blueprints for any additional features (artifacts). This 

comprehensive approach makes it easier to rebuild the house (reproduce the model) or move it 

to a different location (deploy the model) with minimal effort.

Many popular ML frameworks have built-in functionalities to save models in the MLflow format. 

By leveraging these functionalities within your training scripts, you can seamlessly integrate your 

models with Azure Machine Learning for registration and deployment.

Custom model formats
While MLflow offers a powerful standardized approach for model packaging, there might be 

scenarios where your project demands a custom model format. Here’s why custom formats might 

be necessary:



Chapter 4 93

•	 Unique frameworks: If you’re venturing beyond popular frameworks and utilizing a 

less common machine learning framework for training, that framework might not have 

built-in support for saving models in the MLflow format. In such cases, you might need 

to define a custom format specific to the framework you’re using.

•	 Specialized requirements: Certain models might have intricate dependencies or additional 

artifacts that go beyond what MLflow typically captures. For example, your model might 

require custom hardware accelerators or specific software libraries that aren’t commonly 

used. A custom format allows you to tailor the packaging to encompass these unique needs.

Here’s an analogy: Imagine you’re building a one-of-a-kind robot (your model) with specialized 

components. MLflow provides a standardized blueprint for robots with common functionalities. 

However, your robot might require unique parts or functionalities that aren’t captured in the 

standard blueprint. A custom format allows you to define a specific blueprint that accommodates 

the unique aspects of your robot (model).

Challenges and considerations
While custom formats offer flexibility, they come with additional considerations:

•	 Increased complexity: Registering custom models requires additional configuration in 

Azure Machine Learning to define how the model should be handled (loading, scoring, 

deployment). This can add complexity to the registration process compared to using the 

standardized MLflow format.

•	 Limited interoperability: Custom formats might not be readily compatible with other 

tools or platforms outside of Azure Machine Learning. This can hinder the reusability 

and sharing of your models.

Given these challenges, it becomes important to carefully evaluate which model format best fits 

your workflow and long-term operational goals.

Choosing the right format
In most cases, leveraging the MLflow format is the recommended approach due to its 

standardization and ease of use. However, if you have specific requirements that necessitate a 

custom format, Azure Machine Learning offers the flexibility to accommodate those needs. In the 

Registering models in action section, we will look into the practicalities of model registration using 

the Azure Machine Learning CLI v2, considering both MLflow and custom formats.

Now let’s assume we got a model from a job output, and we want to register it to the workspace 

so that it can be shared and used in later stages.



Model Management (Registration and Packaging)94

Before registering a model, let’s quickly understand the storage that holds all the model files and 

other artifacts for MLOps.

Datastores
Datastores play a critical role in managing the various artifacts associated with your machine 

learning projects. Think of them as well-organized libraries where you store all the building 

blocks for your projects. Datastores provide a centralized location to house essential assets such 

as the following:

•	 Training scripts: This is the code used to train your models.

•	 Datasets: This is the data used to train and evaluate your models.

•	 Model outputs: These are the trained models themselves, often consisting of multiple 

files (weights, configurations, etc.).

•	 Other artifacts: Depending on your project needs, datastores can also accommodate 

additional artifacts such as experiment logs, output data from intermediate pipeline steps, 

or even pre-processed datasets.

AML datastores provide a secure way to link your Azure Storage services to your workspace, 

allowing you to access storage without embedding connection details directly in your scripts. 

The connection secrets, such as authentication credentials for the storage service, are securely 

stored in your workspace’s key vault.

Upon creating a workspace, an Azure Storage account is automatically generated as an associated 

resource. Within this account, a blob container is created, and its connection details are saved 

as a datastore named workspaceblobstore. This datastore acts as the default storage for the 

workspace, housing workspace artifacts, machine learning job logs, and outputs.

To put theory into practice, let’s explore how to register a model obtained from a completed job 

output.

Registering models in action
By registering a model, you make it a managed entity within your workspace, enabling sharing 

and utilization in subsequent stages of your MLOps workflow. The AML CLI empowers you to 

seamlessly register models stored in various locations and formats, such as the following:

•	 Local storage: If your model files reside on your local machine, you can register them 

using the az ml model create command, specifying the path to the model directory.



Chapter 4 95

•	 Job output (datastore): Many Azure Machine Learning pipelines generate models as 

outputs and store them within a designated datastore (e.g., Azure Blob Storage). The az 

ml model create command can directly reference the model Uniform Resource Identifier 

(URI) within the datastore for registration.

When registering a model from a job output, you need to know the datastore name and the relative 

path to the model files within that datastore. This information is typically available in the job 

output logs or within the pipeline configuration itself.

Examples of model registration with the AML CLI
Let us look at a couple of examples:

•	 Registering a model from local storage: If the model is already available in your local 

storage, it can be directly uploaded during model registration by specifying the path.

•	 Registering a model from job output: If your model data originates from a job output, 

you have two options for specifying the model path, accommodating a wide range of 

locations. If you didn’t register your model directly within the training script using MLflow, 

you can use this method to establish a lineage between the registered model and the job 

it was trained from. Some of the recognized formats can be seen in the following figure:

Figure 4.2 – Model registration path support

(source: https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-
models?view=azureml-api-2&tabs=cli#supported-paths)



Model Management (Registration and Packaging)96

You can run this CLI command to register the model (e.g., from an MLflow job):

az ml model create --name my-registered-model --version 1 --path runs:/
my_run_0000000000/model/ --type mlflow_model

Once a model is registered, it will have all the metadata. The following is an example of model 

metadata as shown in the AML portal:

Figure 4.3 – Registered model with metadata

Notice the rich metadata in Figure 4.3, along with the Created by job section. You can go back 

to the training job that was responsible for the registration of this model and see all the related 

information. Along with that, it has the version information, which shows the different versions 

that are registered (the screenshot shows version 14).

The primary goal of registering a model is to prepare it for the next stage of the MLOps lifecycle: 

using the model for a business use case. To achieve this, the model must be deployed within a 

serving mechanism. This mechanism accepts input, performs necessary transformations, feeds 

the data to the model, obtains the output (prediction/inferencing), and returns it to the requester.

We’ll discuss these concepts and their various implementations in detail in Chapter 5. For now, 

let’s maintain a high-level overview of this serving process.



Chapter 4 97

The serving process can be complex and highly dynamic. For instance, during deployment, a 

model may require hundreds of packages to be installed on the serving platform. These packages 

could originate from private feeds or highly secure environments, each with unique network 

requirements. Such constraints can cause installation failures. To mitigate these issues, model 

packaging becomes a crucial step.

Model packaging
Model packaging involves preparing a model along with all its dependencies, configurations, 

and necessary artifacts so that it can be easily deployed to the target serving infrastructure. This 

includes the following:

•	 Serialization: This entails converting the model into a format that can be easily stored 

and transferred (e.g., saving a TensorFlow model as an .h5 file).

•	 Dependency management: This refers to including all libraries and packages the model 

depends on, ensuring they are available and compatible with the deployment environment.

•	 Configuration files: This entails providing configuration files (e.g., YAML, JSON) that 

specify how the model should be loaded and run.

•	 Containerization: This refers to using container technologies such as Docker to encapsulate 

the model and its dependencies, ensuring consistency across different environments.

•	 Versioning: This involves keeping track of different versions of the model to manage 

updates and rollbacks effectively.

By addressing these aspects, model packaging aims to reduce deployment failures, streamline 

private networking configurations, and manage packages in secure environments, ultimately 

making the deployment process more reliable and efficient.

Commands for model packaging
In the AML CLI, there is a separate command group for the model package – it is az ml model 

package.

As an example, let’s consider that the following is a .yml file that will be used by the CLI to create 

a package for a model:

package.yml

target_environment: model-packaged-environment

base_environment:

    type: environment_asset



Model Management (Registration and Packaging)98

    source: azureml:AzureML-ACPT-pytorch-1.11-py38-cuda11.3-gpu:1

inferencing_server:

    type: azureml_online

    code_configuration:

        code: src

        scoring_script: score.py

model_configuration:

    mode: download

inputs:

    labels:

        path: azureml:labels-data:1

        type: uri_folder

        mode: copy

The following CLI command can be used to create a model package named model-packaged-

environment:

az ml model package --name my-model --version my-version  --file package.
yml

Properties of a package operation
The base environment, inferencing server, model, and other inputs are the important properties 

of a package operation that determine the output environment that gets generated. Let’s learn 

more about these:

•	 Base environment: This is the base image used to construct the package. Any required 

dependency that cannot be provided as input should be part of the environment resource. 

This mainly includes pip and conda packages, or any serving software if this is a custom 

package.

Purpose: Its purpose includes any required dependencies that cannot be provided as inputs, 

such as pip and conda packages or custom serving software.

Example: In the YAML file, the base environment is defined as azureml:AzureML-ACPT-

pytorch-1.11-py38-cuda11.3-gpu:1.

•	 Inferencing server: This is the server used for serving the model.

Purpose: It specifies the inferencing server type, which can be AzureMLOnline (AML’s 

standard inferencing solution), AzureMLBatch, Triton, or Custom. For custom servers, 

the server is assumed to already be present in the provided environment.



Chapter 4 99

Example: The inferencing server is defined as azureml_online, with the code and scoring 

script specified.

•	 Model: This is the reference to the model that needs to be included in the package.

Purpose: It ensures that the model is available in the resulting environment, either by 

copying or downloading.

Example: The model configuration is set to `download`.

•	 Inputs: These are any additional data that needs to be included in the package.

Purpose: It allows for the inclusion of custom data, such as labels, that might be required 

during inferencing.

Example: Inputs include labels-data specified as a URI folder to be copied.

Creating a package
To create a package, use the following CLI command:

az ml model package --name regression_example_model --version 14 -f 
package.yml

Once the packaging service gets this request it does quite a bit of heavy lifting behind the scenes. 

The details are as follows:

1.	 Get the model name: Retrieve the model named my_model.

2.	 Base environment setup: Start with the initial base environment specified in the base_

environment section.

3.	 Install packages: Install all necessary Python packages in the base environment. These 

Python packages are typically part of the conda.yml file.

4.	 Download the model: Ensure the model is downloaded in the current path and available 

in the environment.

5.	 Copy scoring script: Copy the required scoring script from the specified path.

6.	 Include additional data: Copy any other requirements, such as custom data, that might 

be needed during inferencing.

7.	 Prepare the environment: Combine all components to create a ready-to-use environment, 

saved as model-packaged-environment.



Model Management (Registration and Packaging)100

At the end of this process, the resulting package (which is an environment) is fully prepared 

and ready for deployment, ensuring all dependencies and configurations are correctly set up, as 

shown in Figure 4.4.

Figure 4.4 – Package operation overview

Once a model package operation is in progress, you can see the status in the AML portal – Running 

is shown in Figure 4.5:

Figure 4.5 – Model package look and feel



Chapter 4 101

Once the operation ends, the package (environment) is ready.

Ensuring that your model, which is the cornerstone of machine learning, is properly registered 

and stored is crucial for seamless integration into later stages of ML pipelines. This section has 

demonstrated how to achieve this foundational process, setting the stage for efficient and reliable 

MLOps workflows.

Summary
This chapter introduced the critical concept of model management within AML. We explored how 

effective management practices ensure the reliability, reproducibility, governance, maintainability, 

and successful deployment of your machine learning models.

With these commands and concepts, you should now be able to build your own pipeline step/

component that will take a model from your pipeline job and register/package it. This is a nice 

addition to the E2E pipeline you already have from Chapter 3, where it generated a model, and 

now, we have added to it.

The chapter then explained how uploading your trained model and its metadata to the 

Azure Machine Learning workspace or the dedicated model registry is the cornerstone of 

model management. Next, we saw how standardized model formats such as MLflow ensure 

interoperability and simplify deployment. Custom formats, while offering flexibility, introduce 

complexity.

We explored the az ml model create command for registering models from local storage or job 

outputs, along with the different format options (MLflow and custom).

The chapter also provided a high-level introduction to model packaging, a crucial step for 

preparing models for deployment. We discussed the role of serialization, dependency management, 

configuration files, containerization, and versioning in this process.

In the next chapter, we’ll delve deeper into model deployment strategies within Azure Machine 

Learning, exploring various deployment options and best practices for serving your models in 

production environments.





5
Model Deployment: Batch 
Scoring and Real-Time Web 
Services

In Chapter 4, we explored the crucial steps of model registration and packaging, ensuring that your 

trained models are well-documented, versioned, and ready for deployment. With your models 

securely registered and their metadata meticulously tracked, the next logical step in the MLOps 

lifecycle is to serve these models in a production environment. This chapter will guide you through 

the process of model serving or deployment, enabling your models to deliver real-time predictions 

and drive business value.

Having successfully registered and packaged your ML models, you now possess well-managed and 

version-controlled artifacts ready for deployment. The journey from model creation to deployment 

is akin to preparing a product for market release; all the meticulous preparations culminate in a 

model that is ready to be served to end users or integrated into applications. This chapter delves 

into the intricacies of model serving within Azure Machine Learning (AML), exploring various 

deployment strategies and best practices to ensure your models are robust, scalable, and reliable 

in production environments.

Before diving into deployment strategies, it’s important to distinguish between model packaging 

and deployment. Model packaging, covered in Chapter 4, involves preparing your model with 

its environment dependencies and scoring logic into a deployable artifact. Deployment (also 

referred to as serving throughout this chapter) is the actual process of making that packaged 

model available to receive and respond to prediction requests in a production environment.



Model Deployment: Batch Scoring and Real-Time Web Services104

This session will explore key aspects of deploying ML models using AML. We will begin by 

examining the various model deployment options available, such as real-time inference and 

batch scoring, to help you choose the most suitable approach for your use case. 

Next, we’ll delve into setting up and optimizing the underlying infrastructure to ensure your models 

perform efficiently and scale as needed. Finally, we will discuss how to integrate deployment 

into your automation pipelines, enabling a smooth and reliable transition from development to 

production environments.

We will be covering the following main topics:

•	 Model deployment options

•	 Online inferencing

•	 Batch inferencing

By the end of this chapter, you will have a comprehensive understanding of how to effectively 

serve your ML models, enabling them to deliver actionable insights and drive decision-making 

in real-world applications. Let’s embark on this next phase of the MLOps journey, transforming 

your registered models into powerful, deployed solutions.

Model deployment options
There are a variety of deployment options tailored to different use cases and performance 

requirements. The two primary methods for deploying models are real-time inference and batch 

scoring. Understanding these methods and their appropriate applications will enable you to 

choose the best deployment strategy for your specific needs.

Real-time inference
Real-time inference, also known as online inference, involves deploying models in a manner that 

allows them to respond to prediction requests immediately. This method is ideal for scenarios 

where timely predictions are crucial, such as fraud detection, recommendation systems, or real-

time decision-making applications.

Some key characteristics of this method are as follows:

•	 Low latency: Real-time inference is designed to provide predictions with minimal delay, 
often within milliseconds.

•	 Scalability: It’s capable of handling fluctuating loads, ensuring consistent performance 
even during peak times.



Chapter 5 105

•	 Availability: It’s typically deployed in high-availability configurations to ensure continuous 
service.

With a solid understanding of real-time inference and its critical characteristics, you’re now ready 

to explore how to implement this deployment strategy using AML. In the following section, we’ll 

walk through how AML supports real-time endpoints, enabling you to serve predictions reliably 

and at scale.

Implementation in AML
Real-time inference can be implemented in AML in the following ways:

•	 Kubernetes service (K8s): It’s a good practice to deploy models on an open source 

Kubernetes cluster for high scalability and availability. The Kubernetes service allows 

you to handle large numbers of concurrent requests and scale out as needed. It is ideal 

for teams needing fine-grained control over deployment infrastructure.

•	 Managed online endpoints: AML offers managed endpoints that abstract away the 

complexity of infrastructure management, providing an easy way to deploy and scale 

models with built-in monitoring and logging. It is well-suited for teams that prioritize 

ease of use and faster deployment cycles without compromising on reliability.

With these deployment options in mind, the next step is to understand the underlying 

infrastructure that supports them, ensuring your real-time inference services are reliable, scalable, 

and production-ready. Let’s take a closer look at the deployment infrastructure behind these 

approaches.

Deployment infrastructure
This section will cover a high-level overview of a typical ML model serving architecture. The 

details of the inference infrastructure are as follows:

•	 Serving framework: A model serving framework handles the actual serving of the model. 

This could be a specialized ML serving system, such as TensorFlow Serving, TorchServe, 

or Seldon Core, or a general API serving framework, such as FastAPI or Flask.

•	 Inference server: The inference server is a scalable, often containerized, environment 

where the model is hosted. It listens for incoming inference requests, processes them 

using the model, and returns predictions. This server can be deployed on cloud platforms 

(e.g., AWS SageMaker, Google AI Platform, AML) or on-premises.



Model Deployment: Batch Scoring and Real-Time Web Services106

Once deployed, it’s typically exposed through an API gateway and load balancer, which handle 

traffic management and ensure high availability. The API gateway and load balancer work in the 

following manner:

•	 API gateway: It acts as an entry point for client applications, routing requests to the 

appropriate inference servers. It provides features such as authentication, rate limiting, 

and request validation.

•	 Load balancer: It distributes incoming inference requests across multiple instances of 

the inference server to ensure high availability and scalability.

Next, let’s get an understanding of how monitoring and logging function:

•	 Monitoring: This entails tools and frameworks for monitoring the health and performance 

of the model serving infrastructure. Metrics such as latency, throughput, error rates, and 

resource utilization are tracked.

•	 Logging: It entails logging of inference requests and responses for auditing, debugging, 

and performance analysis. This includes capturing inputs, outputs, and any errors or 

exceptions.

Lastly, autoscaling and resource management work in the following way:

•	 Autoscaling: This includes mechanisms to automatically scale the inference infrastructure 

based on demand. This ensures that the system can handle varying loads efficiently.

•	 Resource management: This entails efficient allocation of computational resources (CPU, 

GPU, memory) to balance cost and performance.

To illustrate this setup visually, refer to Figure 5.1, which represents a typical online inference 

architecture. This diagram provides a high-level overview of the key components and interactions 

between them, ensuring efficient deployment and serving of ML models:



Chapter 5 107

Figure 5.1 – Typical online inference architecture

Next, let’s move on to batch inference.

Batch inference/scoring
Batch scoring, also known as offline inference, is suited for scenarios where predictions are 

generated on large datasets at scheduled intervals. This method is ideal for use cases such as 

generating nightly recommendations, processing large volumes of data for analytics, or scoring 

entire databases.

Some key characteristics of batch inference are as follows:

•	 High throughput: It’s designed to process large volumes of data efficiently.

•	 Scheduled execution: It often runs at predefined intervals (e.g., hourly, daily) rather than 

on demand.



Model Deployment: Batch Scoring and Real-Time Web Services108

•	 Resource optimization: It utilizes compute resources efficiently by processing data in bulk.

•	 Input/output: Data is provided in files or blobs, and the predictions are also output to 

files or blobs.

•	 Response time: Batch inferencing is asynchronous and typically has higher latency since 

it processes large volumes of data.

With these characteristics in mind, let’s now explore how batch inference is implemented in 

AML and how its tooling supports large-scale, scheduled prediction workflows with efficient 

resource management.

Implementation in AML
Batch inference is implemented in AML in the following ways:

•	 Azure Batch: One can leverage Azure Batch for large-scale parallel processing. Azure 

Batch can distribute the workload across many nodes, ensuring efficient processing of 

large datasets.

•	 Databricks: Integration with Azure Databricks can be done for a seamless experience in 

running batch inference jobs on big data.

•	 Pipeline steps: AML pipelines can be used to create batch scoring jobs that can be scheduled 

and managed efficiently, allowing for automated and repeatable batch inference processes.

With these implementation options available in AML, it’s important to understand the underlying 

infrastructure that supports batch inference at scale. In the next section, we’ll look at how the 

deployment architecture is structured to ensure efficient, reliable, and scalable processing of 

large datasets.



Chapter 5 109

Deployment infrastructure
Figure 5.2 illustrates a high-level overview of a batch inference infrastructure using Azure services:

Figure 5.2 – Typical batch inferencing in a nutshell

Figure 5.2 represents a typical batch inference architecture and provides a high-level overview 

of the key components and interactions between them. Let’s break it down into three main 

components:

•	 Data Preparation and Processing component:

•	 Azure Blob Storage: This is where the input data for the batch inferencing is stored. 

It acts as a centralized storage solution for unstructured data.

•	  Azure Batch / Azure Data Factory (ADF): These services are responsible for 

orchestrating the data processing workflow. They fetch the input data from Azure 

Blob Storage and manage the execution of batch jobs.



Model Deployment: Batch Scoring and Real-Time Web Services110

•	 AML Compute Instances / Azure Databricks: Once the input data is prepared, 

these compute resources are used to execute the ML models for inferencing. The 

choice between AML compute instances and Azure Databricks depends on the 

specific use case and requirements, such as the need for big data processing 

capabilities or specialized ML compute environments.

•	 Job Scheduling and Execution component:

•	 ADF/CLI/SDK: Jobs can be scheduled and managed using Azure Data Factory, 

Command Line Interface (CLI), or Software Development Kits (SDKs). These 

tools provide flexibility in how batch jobs are triggered and managed.

•	 REST API: Batch jobs can also be triggered programmatically via a REST API, 

allowing for integration with other applications or automation scripts.

•	 Output Storage and Monitoring component:

•	 Output Storage: After the inferencing is completed, the results are stored in various 

storage solutions such as Azure SQL Database, Azure Data Lake, or Azure Blob 

Storage. These options provide scalability and flexibility in storing structured 

and unstructured data.

•	 Monitoring and Logging: Azure Monitor and Azure Log Analytics are used to 

monitor the performance and execution of the batch jobs. They provide insights 

into job status, resource utilization, and logs for debugging and auditing purposes.

A key workflow in the context of AML looks as follows:

1.	 Input data is stored in Azure Blob Storage.

2.	 Azure Batch or ADF is used to orchestrate the inferencing workflow.

3.	 An ML model is executed on AML compute instances or Azure Databricks.

4.	 The results are stored in a suitable output storage solution.

5.	 Monitoring and logging are handled by Azure Monitor and Azure Log Analytics to ensure 

smooth operations and quick troubleshooting.

6.	 These steps allow for scalable, efficient batch inferencing, suitable for processing large 

volumes of data and generating predictions in bulk.

We have now explored the two primary model deployment approaches available in AML: real-

time inference for immediate predictions with low latency, and batch inference for processing 

large datasets efficiently at scheduled intervals. With this foundational understanding of 

deployment architectures and their respective use cases, we can now move on to implementing 

these deployment strategies using AML CLI tools.



Chapter 5 111

Now we have a high-level idea of how models can be served in two different ways. Let’s use the 

CLI to execute these two types.

Online inferencing
In this section, we will start with a model, then deploy it as an online endpoint and show how 

to use inferencing.

Preparing the model
We’ll start with a simple model created using the Iris dataset (https://archive.ics.uci.edu/

dataset/53/iris), which has different measurements of flowers and their classifications. The 

following Python code creates this model and saves it as model.pkl:

```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import joblib

#Load the iris dataset
iris = load_iris()
X, y = iris.data, iris.target

Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42
)

#Train a simple Random Forest model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

Save the model as a pickle file
joblib.dump(model, 'model.pkl')
```

To generate the model so that it could be registered in the next step, execute this command:

python model.py 

This will create a file named model.pkl

https://archive.ics.uci.edu/dataset/53/iris
https://archive.ics.uci.edu/dataset/53/iris


Model Deployment: Batch Scoring and Real-Time Web Services112

Registering the model
Once the model is created, it needs to be registered in your AML workspace so it can be used 

within it for other parts of the MLOps stages. Assume the model has been registered as iris-

model with version 1.

az ml model create --name iris-model --version 1 --path ./model.pkl--
resource-group <your-resource-group> --workspace-name <your-workspace-
name>

The registered model can be referenced in other AML commands using the azureml:iris_model:1 

path. This is CLI syntactic sugar, where it’s expanded to the real URI where the model lives. The 

same is true for compute and environments, as you will notice through this chapter in the YAML 

files.

Scoring script
Since the registered model will be hosted in a virtual machine within a container, there needs 

to be a handler that will take the input to the model and run the necessary steps before sending 

the input to the model, get the output from the model, and then send it out. This handler is 

commonly called the scoring script – distinct from scoring scripts used during model evaluation, 

this deployment scoring script specifically handles the interface between incoming requests and 

your trained model in production. Let’s use the following code and save it as online_score.py:

```python
import json
import joblib
import numpy as np

def init():
 global model
 model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"),('model.pkl')
 model = joblib.load(model_path)

def run(raw_data):
 try:
 data = np.array(json.loads(raw_data)['data'])
 result = model.predict(data)
 return json.dumps({"result": result.tolist()})
 except Exception as e:
 return json.dumps({"error": str(e)})
```



Chapter 5 113

Configuring the environment
The scoring script and model need to run inside a Docker container with specific dependencies.

Let’s use this environment configuration and save it in a file named environment.yml.

```yaml

$schema: https://azuremlschemas.azureedge.net/latest/environment.schema.
json

name: iris-env

 version: 1

image: mcr.microsoft.com/azureml/minimal-ubuntu22.04-py39-cpu-inference

 conda_file: conda_file.yml

```

This environment creation installs the necessary python packages, which will be used to setup 

the execution environment inside Docker mentioned in conda_file.yml as shown:

```yaml 

channels:

 - conda-forge

dependencies:

 - python=3.10

 - numpy

 - pip

 - scikit-learn

 - scipy

 - pip:

 - joblib

 - azureml-inference-server-http

 - inference-schema

name: iris-env

```

Let’s register this environment with the name iris-env with version 1:

```bash

az ml environment create --file environment.yml --resource-group <your-
resource-group> --workspace-name <your-workspace-name>

```



Model Deployment: Batch Scoring and Real-Time Web Services114

The registered environment can be referenced in other AML commands using the azureml:/

environments/iris-env/versions/1 path.

Deployment
Next, we’ll create an endpoint and deploy the model using a managed online endpoint. This 

involves defining the deployment configuration in a YAML file.

Creating an endpoint means getting the network endpoint setup with a name, so a URI is created 

for users to call into.

Let’s define the online-endpoint.yml which describes the online endpoint name and auth type:

```yaml 

name: iris-online-endpoint

auth_mode: key

```

To create, execute the following command:

```bash 

az ml online-endpoint create --file online-endpoint.yml --resource-group
<your-resource-group> --workspace-name <your-workspace-name>

```

This will create a managed online endpoint.

Once the endpoint is created, we have a router to send our requests. Now, let’s create a deployment 

inside the endpoint that will do the real serving of the request. This deployment will need the 

model, scoring script, and the environment.

Let’s save the following file as iris-online-deployment.yaml:

```yaml

$schema: https://azuremlschemas.azureedge.net/deployment-1.1.0.schema.json

name: iris-online-deployment # Name of the online deployment

endpoint_name: iris-endpoint # Name of the endpoint where the deployment

 # will be exposed

model: azureml:iris-model:1 # Reference to the model version to be

 # deployed

Chapter 5 115

code_configuration:

 code: . # Path where your code files (including online_score.py) are

 # stored

 scoring_script: online_score.py # The script used for online

 # inferencing

environment: azureml:iris-env:1 # Reference to the environment version

 # that defines dependencies

instance_type: Standard_F2s_v2 # Specifies the VM SKU type to be used for

 # the deployment

Instance_count: 1 # Number of vm instances to be created

```

To create the deployment, we will use the following command.

```bash

az ml online-deployment create --file iris-online-deployment.yaml
--resource-group <your-resource-group> --workspace-name <your-workspace-
name>

```

For more in-depth setting and configuration options, please refer to https://learn.
microsoft.com/en-us/azure/machine-learning/reference-yaml-deployment-managed-

online?view=azureml-api-2.

Inference on deployment
Now that the model is deployed, you can send a request to the endpoint for prediction. The request 

should be in JSON format, matching the input expected by the model. For example, in this scenario, 

we deployed an iris model that takes a collection of arrays, where each array has four real numbers 

separated by commas. This would be input to the model, and the output would be the following:

`sample_request.json`:

```json

{

 "data": [

https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-deployment-managed-online?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-deployment-managed-online?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-deployment-managed-online?view=azureml-api-2

Model Deployment: Batch Scoring and Real-Time Web Services116

 [5.1, 3.5, 1.4, 0.2],

 [6.2, 3.4, 5.4, 2.3]

]

}

```

Invoke the endpoint passing the content of this file as our input:

```bash

az ml online-endpoint invoke --name iris-online-endpoint --deployment-name
iris-online-deployment --request-file sample_request.json --resource-
group <your-resource-group> --workspace-name <your-workspace-name>

```

A typical output of this command will look like this:

"\"{\\\"result\\\": [0, 2]}\""

With this understanding of how basic online inferencing works, let’s use this knowledge to achieve 

a similar goal with batch inferencing.

Batch inferencing
Before using the iris model for batch inferencing, let’s understand the accommodations that are 

required for batch inferencing.

For batch inferencing, we need to modify the scoring script and the deployment configuration.

yaml file, as the operational details and handling of data are different from the line counterpart. 

Let’s investigate these more closely.

Scoring script
These are the different aspects of a scoring script. The first of these is data handling, which includes 

the following:

•	 Online inferencing: The scoring script (online_score.py) is designed to handle a single 

request at a time. It receives data in real time, processes it, and immediately returns 

predictions. This works well for scenarios where low latency and quick responses are critical.

•	 Batch inferencing: The scoring script (batch_score.py) is optimized for handling data 

in bulk. Instead of dealing with individual requests, it processes entire files or blobs of 

data at once. The script reads from input files, processes them in batches, and writes the 

predictions to output files. This approach is better suited for situations where latency 

isn’t a concern, but processing large datasets efficiently is essential.



Chapter 5 117

Next is asynchronous processing, the details of which are as follows:

•	 Online inferencing: The script operates synchronously, handling one request at a time, 

making it ideal for use cases that require immediate results. For example, in an airport 

security system, you show a person’s face, and it quickly checks and says whether the 

security background is clear or not.

•	 Batch inferencing: The batch script is designed for asynchronous processing. It allows for 

parallel or distributed execution across large datasets, where predictions can be computed 

in chunks (mini-batches), and the final output is saved after processing all the input data. 

For example, I have hundreds of credit card applications and I want to run a job that will 

process all the applications and store the results in files indicating which applications 

are approved for the card.

The aspects of I/O operations include the following:

•	 Online inferencing: Input data is typically passed directly in the request body (e.g., JSON 

format), and the predictions are returned in the HTTP response.

•	 Batch inferencing: Input and output are managed via files or blobs. The script reads data 

from files or blob storage, processes it, and then writes the results back to output files or 

blobs. This file-based I/O is a crucial distinction for handling large datasets that can’t be 

efficiently processed through real-time HTTP requests.

Error handling works in the following manner:

•	 Online inferencing: Since the script is synchronous and deals with real-time requests, 

errors are captured and immediately returned as part of the response, which is critical 

for monitoring and retry mechanisms.

•	 Batch inferencing: Errors are handled across batches, and logs or error files may be 

generated instead of immediate responses. This allows for more comprehensive error 

reporting and retry mechanisms for specific batches rather than the entire job.

So, now let’s modify the scoring script and make it a file named batch_score.py:

```python

 import json

 import joblib

 import numpy as np

 import os

Model Deployment: Batch Scoring and Real-Time Web Services118

 def init():
 global model
 model_path = os.path.join(os.getenv("AZUREML_MODEL_
DIR"),('model.pkl'))

 model = joblib.load(model_path)

 def run(mini_batch):
 try:
 results = []
 for file_path in mini_batch:
 with open(file_path, 'r') as f:
 data = np.array(json.load(f)['data'])
 result = model.predict(data)
 results.append({"input": file_path, "prediction":
result.tolist()})
 output_file_path = os.path.join(os.getenv("AZUREML_BI_
OUTPUT_PATH", ""), "predictions.json")
 with open(output_file_path, 'w') as out_f:
 json.dump(results, out_f)
 return output_file_path
 except Exception as e:
 return str(e)
 try:
 results = []
 for file_path in mini_batch:
 with open(file_path, 'r') as f:
 data = np.array(json.load(f)['data'])
 result = model.predict(data)
 results.append({
 "input": file_path,
 "prediction": result.tolist()
 })
 output_file_path = os.path.join(
 os.getenv("AZUREML_BI_OUTPUT_PATH", ""),
 "predictions.json"
)
 with open(output_file_path, 'w') as out_f:
 json.dump(results, out_f)

Chapter 5 119

 return output_file_path
 except Exception as e:
 return str(e)
```

By tailoring the scoring script to the nature of batch processing, it can be used for efficient 

execution of large-scale inferencing workloads, making it ideal for scenarios where data needs 

to be processed in bulk without real-time constraints.

Configuring the environment for online deployment
Let’s use this environment configuration and save it in a file name environment_batch.yml file:

```yaml 

$schema: https://azuremlschemas.azureedge.net/latest/environment.schema.
json

name: iris-env-batch

 version: 1

image: mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest

 conda_file: conda_file_batch.yml

``` 

This environment creation installs the necessary Python packages, which will be used to setup 

the execution environment inside Docker mentioned in conda_file_batch.yml as below:

```yaml 

channels:

 - conda-forge

dependencies:

 - python=3.8.5

 - pip<22.0

 - pip:

 - joblib

 - scikit-learn

 - scipy

 - pandas

 - azureml-core

 - 'azureml-dataset-runtime[fuse]'

name: iris-env-batch

```



Model Deployment: Batch Scoring and Real-Time Web Services120

Deployment configuration
The deployment YAML will also adjust to support batch deployment. Let’s assume we create a 

batch endpoint, with the name iris-batch-endpoint, to invoke the batch job request. Let’s create 

a deployment inside the endpoint. This deployment will need the model, scoring script, and the 

environment, and some extra settings that are required for batch inferencing, when compared 

with the settings of the online one.

Configuring the environment for batch deployment
Let’s use this environment configuration and save it in a file name environment_batch.yml file. 

```yaml 

$schema: https://azuremlschemas.azureedge.net/latest/environment.schema.
json

name: iris-env-batch

 version: 1

image: mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest

 conda_file: conda_file_batch.yml

```

This environment creation installs the necessary Python packages, which will be used to setup 

the execution environment inside Docker mentioned in conda_file_batch.yml as below:

```yaml 

channels:

 - conda-forge

dependencies:

 - python=3.8.5

 - pip<22.0

 - pip:

 - joblib

 - scikit-learn

 - scipy

 - pandas

 - azureml-core

 - 'azureml-dataset-runtime[fuse]'

name: iris-env-batch

```



Chapter 5 121

Let’s save the following file as iris_online_deployment.yaml:

```yaml

$schema: https://azuremlschemas.azureedge.net/deployment-1.1.0.schema.json

name: iris-batch-deployment # Name of the batch deployment

endpoint_name: iris-batch-endpoint # Name of the endpoint to which this

 # deployment belongs

type: model # Specifies that this deployment is a model deployment

model: azureml:iris-model:1 # Reference to the model version to be used in

 # the deployment

code_configuration:

 code: . # Path where your code files (including batch_score.py) are

 # stored

 scoring_script: batch_score.py # The script used for batch scoring

environment: azureml:iris-env-batch:1

 # Reference to the environment version

 # that defines dependencies

compute: azureml:batch-
cluster # Name of the compute target (cluster) to run the batch job

resources:

 instance_count: 2 # Number of compute instances to be used for the

 # batch job

settings:

 max_concurrency_per_instance: 2 # Maximum number of parallel tasks to

 # run on each compute instance

 mini_batch_size: 2 # Number of records to process in one mini-batch

 output_action: append_row # Specifies how the output should be

 # combined; 'append_row' adds results to a

 # single file

 output_file_name: predictions.csv # Name of the output file where

Model Deployment: Batch Scoring and Real-Time Web Services122

 # predictions will be stored
 retry_settings:
 max_retries: 3 # Maximum number of times to retry a failed task
 timeout: 300 # Maximum time (in seconds) a single task is allowed to
 # run before timing out
 error_threshold: -1 # Specifies the number of failed records allowed
 # before the job is
 # terminated (-1 means no limit)
 logging_level: info # Sets the logging verbosity level; 'info' provides
 # informational messages
```

This YAML file defines a batch deployment for AML, using iris-batch-deployment on iris-

batch-endpoint. It specifies the model, code, environment, compute target, resources, settings, 

and traffic distribution for efficient batch processing with error handling and logging. Each entry 

has a comment followed by # for easy explanation.

To create the deployment, we will use the following command. 

```bash 

az ml batch-deployment create --file iris-batch-deployment.yaml
--resource-group <your-resource-group> --workspace-name <your-workspace-
name>

```

Additional concepts related to batch deployment
Before wrapping up the chapter, let’s look at the additional concepts only applicable to batch 

deployment and not to online deployment:

•	 Compute target: A compute cluster (batch cluster) is typically used instead of the instance 

types specified for online endpoints. This allows for parallel processing across multiple 

nodes. To create a compute cluster, the CLI can be used: az ml compute create --name 
batch-cluster --size Standard_NC6 --min-instances 0 --max-instances 5 --type 

AmlCompute --resource-group my-resource-group --workspace-name my-workspace.

•	 Mini-batch size: The mini_batch_size parameter controls how much data is processed 

at once. This is essential for batch jobs to handle large datasets efficiently by breaking 

them into smaller chunks.

•	 Input and output: The input and output paths point to the locations in Azure Blob 

Storage (or other storage services) where the input data files reside and where the output 

predictions will be saved.



Chapter 5 123

•	 Retry settings: The retry_settings section allows specifying the number of retries and 

timeouts for each mini-batch.

•	 Error threshold: You might want to tolerate a certain number of errors without failing 

the entire job. The error_threshold parameter allows you to set this tolerance level.

AML batch deployment supports various settings. To know more about them, please refer 

to https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-

deployment-batch?view=azureml-api-2.

Now, to invoke this batch endpoint, the following would be a sample CLI command:

az ml batch-endpoint invoke --name iris-batch-endpoint  --deployment-
name  iris-batch-deployment  --input ./input_data_ folder --output-path 
azureml://datastores/workspaceblobstore/paths/tests/ output --resource-
group my-resource-group --workspace-name my-workspace

One difference here, compared to an online endpoint, is that this will schedule a job that will 

run in the background. Once the job is complete, the result will be stored in the output path. The 

input is also provided by the folder path. Note that batch endpoints can be invoked on-demand as 

shown previously, or integrated into scheduling systems. For automated scheduling, you would 

typically use Azure Data Factory pipelines, Azure Logic Apps, or external orchestration tools 

such as Apache Airflow to trigger batch jobs at regular intervals (daily, weekly, etc.) rather than 

requiring manual cron jobs.

Once the job is successfully completed, the results file can be downloaded locally:

az ml job download --name <job_name_from_theoutput_of_the_batch_invoke_
command>  --output-name <job_output_path> --download-path  ./

In earlier chapters, we discussed GitHub automation, demonstrating how data processing, training, 

and evaluation can be integrated into a GitHub workflow. In this chapter, we have learned how 

to use the model for inferencing. These inferencing steps can be encapsulated in a script that 

handles tasks such as creating endpoints, deployments, and so on. 

This script can then be integrated into the GitHub pipeline, which will trigger the entire workflow 

upon any Git commit. This trigger could be related to changes in the dataset, updates to the 

training script, modifications to the model evaluation script, alterations to the inferencing/scoring 

script, environment definition changes, and more. As a result, the model will be automatically 

deployed and ready for your business to use.

https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-deployment-batch?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/reference-yaml-deployment-batch?view=azureml-api-2


Model Deployment: Batch Scoring and Real-Time Web Services124

This is a natural extension to the earlier automation, advancing toward a full end-to-end MLOps 

process, as shown in Figure 5.3:

Figure 5.3 – MLOps full cycle

Summary
This chapter focused on the crucial step of deploying your trained ML models, transforming 

them from well-managed artifacts into real-world assets that deliver value. We explored various 

deployment strategies and best practices within AML.

By effectively deploying your models, you bridge the gap between development and production, 

ensuring your models reach their full potential and drive impactful business decisions.

Having successfully completed the core aspects of MLOps, it’s essential to shift our focus 

toward quality and governance. The next chapter will delve into the critical process of capturing 

governance data throughout the ML lifecycle.

By meticulously logging lineage information, including model publication details, reasons for 

changes, and deployment timelines, we can ensure accountability, compliance, and security in 

our AI systems. The next chapter will guide you on how to leverage AML’s capabilities to register, 

package, deploy, and monitor models, thereby maintaining a comprehensive audit trail of all ML 

assets.



6
Capturing and Securing 
Governance Data for MLOps

Governance in MLOps is a critical aspect of machine learning operations (MLOps), ensuring 

the ethical, legal, and secure use of models throughout their lifecycle. It involves establishing 

policies, procedures, and standards to manage risks, comply with regulations, and maintain the 

integrity of ML solutions. Governance provides a structured framework for all stakeholders, from 

data scientists to business leaders, to work collaboratively and responsibly.

In this chapter, we will delve into the essential components of governance in MLOps, beginning 

with the foundational focus areas that set the stage for responsible MLOps. These include 

accountability, compliance, security, and quality assurance—core principles that guide how ML 

systems should be developed and maintained within organizations.

A key aspect of governance is ensuring model integrity. This involves maintaining high data 

quality, implementing robust version control, validating models throughout their lifecycle, and 

addressing ethical considerations to avoid bias or unintended consequences. Closely tied to this 

is understanding and meeting governance requirements such as regulatory compliance, proper 

documentation, and maintaining audit trails to ensure transparency and accountability.

Lineage tracking is another critical topic covered in this chapter. We’ll explore its importance 

in tracing the origins and evolution of datasets and models, and how this can be effectively 

implemented within AML. To support traceability, we’ll discuss best practices around logging 

and documentation, which are fundamental for both debugging and governance audits.



Capturing and Securing Governance Data for MLOps126

We’ll also examine how governance practices can be implemented across the entire ML lifecycle—

from data ingestion and preprocessing to model training, evaluation, and deployment. Security 

and compliance are highlighted as ongoing concerns, with strategies for protecting sensitive data 

and adhering to regulatory standards.

To bridge governance with operational efficiency, we’ll look at how these practices can be 

integrated into CI/CD pipelines and embedded within an organization’s broader DevOps culture. 

Finally, we’ll bring theory into practice with a hands-on example that demonstrates how MLOps 

governance can be applied using AML.

This chapter will have the following main headings:

•	 Key governance focus areas

•	 Implementing governance across the AML lifecycle

•	 Governance strategies for compliance and quality assurance

•	 Ethical considerations

•	 Comprehensive governance in action

By the end of this chapter, you’ll have a solid understanding of MLOps governance principles and 

how to implement them effectively using AML tools and workflows.

Key governance focus areas
Governance in MLOps provides a structured framework to address several foundational focus 

areas that are critical for ensuring the ethical, legal, and secure use of ML models throughout 

their lifecycle. These key focus areas include the following:

•	 Accountability and compliance: Governance assigns clear roles and responsibilities, 

ensuring accountability for actions taken during the ML lifecycle. It also ensures compliance 

with regulations such as GDPR and HIPAA, which mandate strict data privacy and security 

controls. Non-compliance can lead to legal repercussions and financial penalties, making 

governance a critical aspect of risk management.

•	 Security and transparency: Effective governance includes measures to secure data 

and models from unauthorized access and cyber threats, implementing robust security 

protocols and access controls. Governance also promotes transparency by documenting 

decisions, changes, and outcomes, enabling clear explanations for model behavior and 

facilitating audits.

•	 Quality assurance: Governance frameworks include quality control measures to ensure 

model reliability, accuracy, and performance. This continuous improvement process helps 

maintain high standards and build trust in ML solutions.



Chapter 6 127

Building on the key focus areas, governance plays a pivotal role in upholding model integrity 

throughout the entire ML lifecycle. This involves not only implementing robust technical controls 

but also addressing ethical considerations to ensure models perform as expected and adhere to 

organizational values. The following subsections will delve deeper into specific mechanisms for 

maintaining data quality, validating model performance, and addressing ethical concerns.

Ensuring model integrity
This involves a range of practices, from managing data quality and implementing rigorous 

validation processes to addressing ethical considerations and ensuring continuous monitoring. 

The following key areas explore these aspects in detail, highlighting strategies for upholding 

model integrity throughout its lifecycle:

•	 Data quality management and version control: Governance enforces strict data quality 

standards, ensuring accurate, complete, and representative data for model training and 

testing. It also involves meticulous version control and lineage tracking, documenting 

changes and updates to models, and ensuring that modifications are justified and traceable.

•	 Validation, testing, and monitoring: Governance includes rigorous validation and testing 

protocols to evaluate model performance against predefined criteria. Post-deployment 

governance involves continuous monitoring to detect performance degradation or drift, 

ensuring that models remain reliable and effective.

•	 Ethics: Governance frameworks enforce ethical guidelines to prevent harmful or 

discriminatory model development and deployment. This includes bias detection and 

mitigation strategies to ensure fair treatment of all user groups. There will be more on 

this in the section named Ethical considerations.

These integrity measures form the foundation for establishing comprehensive governance 

requirements that guide ML development and deployment practices.

Compliance requirements in ML
Effective ML governance relies on clear requirements that ensure responsible development and 

consistent standards across projects. The following key requirements form the foundation of 

MLOps governance:

•	 Regulatory compliance and data governance: Adhering to regulations such as GDPR and 

HIPAA is crucial for data privacy, security, and ethical AI use. Data governance establishes 

policies for data collection, storage, usage, and disposal, ensuring data quality, access 

control, and anonymization.



Capturing and Securing Governance Data for MLOps128

•	 Model documentation and audit trails: Comprehensive documentation of model 

development processes, including data sources, algorithms, and performance metrics, 

is essential for transparency and reproducibility. Audit trails maintain detailed logs of 

actions and changes, ensuring accountability and compliance.

Lineage
Lineage information is the detailed documentation of the history and provenance of data and 

models throughout the ML lifecycle. It includes metadata about data sources, transformations, 

model training, versions, and deployment. This is crucial as it helps with the following:

•	 Transparency and trust: Provides insights into data and model journeys, building trust 

among stakeholders

•	 Accountability: Tracks changes to data and models, identifying who made modifications 

and when

•	 Reproducibility: Facilitates the reproduction of experiments and results, essential for 

verification and building upon previous work

•	 Compliance: Meets regulatory requirements for data and model handling, avoiding legal 

and financial penalties

•	 Debugging and troubleshooting: Allows efficient issue resolution by tracing back through 

data and model history

•	 Operational efficiency: Provides a clear overview of dependencies and workflows, 

optimizing resource management

After establishing the fundamental governance requirements in ML, understanding lineage 

becomes crucial for ensuring the integrity and transparency of your processes. Lineage information 

offers a comprehensive view of the data and model histories, which supports transparency, 

accountability, and operational efficiency. The following section delves into the importance of 

maintaining detailed lineage documentation and its impact on various aspects of ML governance.

Tools and techniques for lineage tracking in AML
AML offers a range of tools and techniques for tracking data and model lineage. These capabilities 

enable teams to trace the entire lifecycle of datasets, experiments, and models, ensuring that 

every change is documented and auditable. The following list highlights the key features that 

support lineage tracking in AML:

•	 Datasets and datastores: Register and version datasets, providing metadata on data 

sources, formats, and transformations.



Chapter 6 129

•	 Experiment tracking: Track experiments, including parameters, metrics, and outputs, 

using the AML SDK and Studio.

•	 Model registry: Store, version, and annotate models, linking each version to the datasets 

and experiments that produced it.

•	 Pipelines: Orchestrate complex workflows, tracking lineage information at each stage of 

data processing, model training, and deployment.

•	 Audit logs: Capture detailed information on access and changes to data and models, 

maintaining a comprehensive audit trail.

•	 Data drift and monitoring: Monitor data drift and model performance over time, tracking 

changes in data distributions and model behavior. This will be covered in more detail in 

the following chapter, titled Monitoring the ML Model.

Best practices for logging and documenting lineage
With Azure ML’s tools for lineage tracking in place, it’s important to follow best practices to 

ensure that this information is logged and documented effectively. Adopting these practices helps 

maintain accuracy, consistency, and traceability across the entire ML lifecycle, making it easier 

to manage and audit the lineage data. The following recommendations outline key strategies for 

effective lineage logging and documentation:

•	 Automate logging: Use automated tools (e.g., MLflow) to capture lineage consistently 

and accurately, reducing errors.

•	 Comprehensive metadata: Capture all relevant metadata, including data sources, 

preprocessing, model hyperparameters, and evaluation metrics.

•	 Version control: Implement robust version control for datasets, code, and models using 

tools such as Git and AML versioning.

•	 Consistent naming: Adopt naming conventions for datasets, models, and experiments 

to facilitate lineage tracing.

•	 Documentation: Maintain thorough documentation of processes, decisions, and changes, 

including model update rationales and data selection criteria.

•	 Access controls: Implement strict access controls to ensure that only authorized personnel 

can make changes.

With a clear understanding of the foundational governance areas, ranging from accountability, 

compliance, and model integrity to lineage tracking and documentation, you now have the 

essential building blocks for responsible ML operations. 



Capturing and Securing Governance Data for MLOps130

The next step is to see how these principles are applied in practice. In the following section, we’ll 

explore how to implement governance across the entire AML lifecycle, ensuring that these controls 

are embedded from data ingestion through to model deployment and beyond.

Implementing governance across the AML lifecycle
Ensuring governance during data ingestion, preprocessing, and model training involves data 

quality management, version control, and ethical considerations. IT governance during model 

evaluation and validation includes rigorous testing protocols, bias detection, and performance 

monitoring to ensure compliance and model integrity.

Governance in model deployment and monitoring involves continuous monitoring for performance 

drifts, ensuring that models remain reliable and compliant with regulations. There will be more 

details in the next chapter.

AML provides a range of tools and features to support governance across the ML lifecycle, including 

experiment tracking, model registry, pipelines, and audit logs.

After establishing governance across the AML lifecycle, securing the data and lineage information 

becomes paramount. Effective governance isn’t just about tracking and documenting processes 

but also about ensuring the security of this data. The following section will dive into the security 

measures necessary to protect data and lineage information throughout the ML workflow.

Securing data and lineage information
To safeguard both data and lineage information in MLOps, it is essential to implement robust 

security measures throughout the ML lifecycle. The following points outline key practices for 

securing this critical information:

•	 Security principles in MLOps: Security is a critical aspect of governance, involving 

principles such as data encryption, access controls, and regular security audits to protect 

data and models from unauthorized access and cyber threats.

•	 Securing data in AML: Techniques for securing data in AML include encryption at rest and 

in transit, access control policies, and data protection features such as differential privacy.

•	 Protecting lineage information: Lineage information should be protected using 

encryption, access controls, and regular backups. Ensuring the integrity of lineage data 

is crucial for maintaining an accurate record of model development and deployment.



Chapter 6 131

•	 Mitigating risks and ensuring data integrity: Regular security audits, vulnerability 

assessments, and incident response planning are essential to mitigate risks and ensure 

data integrity.

Securing data and lineage information lays the foundation for a robust governance framework, 

but ensuring compliance and quality assurance is equally critical in maintaining model integrity. 

The next section focuses on governance strategies that help achieve regulatory compliance and 

uphold high standards of quality in MLOps.

Governance strategies for compliance and quality 
assurance
The following strategies highlight essential practices for ensuring regulatory compliance and 

maintaining quality assurance throughout the ML lifecycle:

•	 Regulatory compliance in ML: Compliance with regulations such as GDPR, HIPAA, and 

industry-specific standards is essential. AML provides features such as data protection 

controls and audit logs to support compliance.

•	 Quality assurance frameworks: Quality assurance frameworks ensure model reliability 

and performance. This is a set of smaller frameworks:

•	 MLflow’s model registry framework manages model versions and transitions, 

tracks model metadata and artifacts, and supports automated quality gates.

•	 Azure ML’s testing framework enables A/B testing through AML endpoints and 

supports shadow deployment for risk-free testing. Additionally, it facilitates the 

champion-challenger model evaluation.

•	 The continuous validation framework includes data quality validation using 

tools such as Great Expectations, model performance monitoring through AML 

metrics, and automated retraining triggers based on performance thresholds.

Note

While an AML registry (covered in Chapter 5) provides native Azure integra-

tion, MLflow offers cross-platform compatibility and is useful for hybrid or 

multi-cloud environments.



Capturing and Securing Governance Data for MLOps132

•	 Compliance tools in AML: AML offers tools such as data protection controls, audit 

logs, and model validation features to support compliance with regulations and quality 

assurance standards. These are a few examples:

•	 Azure Policy for ML enforces compliance requirements and organizational 

standards.

•	 Azure Key Vault manages secrets and encryption keys securely.

•	 Azure Monitor Application Insights tracks model performance and usage metrics.

•	 AML MLflow integration captures experiment metrics and model artifacts.

•	 Azure Role-Based Access Control (RBAC) manages fine-grained access 

permissions.

•	 Azure ML’s model validation features ensure model quality through automated 

validation pipelines.

•	 Continuous monitoring and auditing: Continuous monitoring and auditing are essential 

to detect and address compliance issues promptly. This includes regular reviews of data 

usage, model performance, and security measures.

After establishing strategies for compliance and quality assurance, the next step is to operationalize 

governance within the ML workflow. By embedding governance practices into the day-to-day 

processes, teams can ensure that compliance, security, and ethical standards are consistently 

met. The following section outlines how to integrate governance into operational workflows and 

explores future trends in MLOps governance.

Operationalizing governance in ML
The following key areas outline the framework for integrating governance into the operational 

aspects of ML, ensuring it becomes an integral part of the ML lifecycle:

•	 Integrating governance into CI/CD pipelines: Governance practices should be integrated 

into CI/CD pipelines to ensure they are part of the everyday ML workflow. This includes 

automated governance checks and balances.

•	 Automated governance checks: Automated governance checks can validate data quality, 

model performance, and compliance with regulations and ethical guidelines.



Chapter 6 133

•	 Building a culture of governance: Building a culture of governance within data science 

teams involves training and education on governance principles, regular governance 

reviews, and fostering a collaborative environment where governance is a shared 

responsibility.

•	 Future trends in MLOps governance: Future trends in MLOps governance include 

the increasing importance of explainable AI, bias detection and mitigation, and the 

development of ethical guidelines for ML development and deployment.

As governance continues to evolve, addressing ethical considerations becomes increasingly 

critical. Ensuring fairness, transparency, and accountability in ML systems is not only a matter 

of compliance but also of fostering trust and social responsibility. The following section delves into 

the ethical challenges, particularly around bias detection and mitigation, that must be addressed 

to uphold these principles.

Ethical considerations
Ethical considerations in ML are paramount to ensure that ML systems are developed and deployed 

fairly, transparently, and accountably. This involves addressing several key aspects, including 

bias detection and mitigation.

Bias detection and mitigation
One of the most significant ethical challenges in ML is the potential for bias in ML models. Bias can 

arise from various sources, including biased training data, biased algorithms, and biased human 

decisions. To address this, it is essential to implement strategies for detecting and mitigating bias.

Bias detection
Here are some techniques commonly used to help with detection:

•	 Data auditing: Regularly audit datasets to identify and address any biases. This involves 

examining the data for imbalances and ensuring that it represents diverse populations.

•	 Fairness metrics: Use fairness metrics to evaluate the performance of models across 

different demographic groups. Metrics such as demographic parity, equalized odds, and 

disparate impact can help identify biases in model predictions.

•	 Transparency: Maintain transparency in the data collection and model development 

processes. Documenting the sources of data, the methods used for data preprocessing, 

and the rationale behind model decisions can help identify potential biases.



Capturing and Securing Governance Data for MLOps134

Bias mitigation
Mitigation can sometimes be equally challenging. However, the following techniques are 

considered a good starting point:

•	 Preprocessing techniques: Implement preprocessing techniques to balance the 

training data. This can include oversampling underrepresented groups, undersampling 

overrepresented groups, or generating synthetic data to achieve a balanced dataset.

•	 Algorithmic fairness: Use algorithms designed to promote fairness. Techniques such 

as adversarial debiasing, reweighting, and fairness constraints can help reduce bias in 

model predictions.

•	 Post-processing adjustments: Apply post-processing adjustments to model outputs to 

ensure fairness. This can involve modifying the decision thresholds or recalibrating the 

model to achieve fair outcomes across different groups.

Having explored the ethical challenges and the importance of addressing bias, it is now crucial 

to translate these principles into actionable practices. This section will guide you through the 

hands-on implementation of governance in AML, focusing on practical steps to integrate audit 

logging and ensure comprehensive governance. We will cover setting up the environment, 

managing datasets and models, securing data, and providing a practical framework to support 

and operationalize the governance strategies discussed.

Comprehensive governance in action
This section will help you seamlessly integrate the audit logging aspect into the overall governance 

framework discussed in the chapter. Here, we will walk through the practical steps of setting up 

an AML environment, registering and versioning datasets, tracking experiments, registering and 

versioning models, building and tracking pipelines, and securing data and lineage information.

These steps will provide you with a comprehensive understanding of how to capture and secure 

governance data in AML, ensuring that your MLOps processes are well governed and secure:

1.	 Registering and versioning datasets: Create a datastore to store your data and register 

your datasets in your workspace. Versioning your datasets is crucial for governance as it 

allows you to track changes and maintain a history of your data:

1.	 Create a datastore:

az ml datastore create --name mydatastore --workspace-name 
myMLWorkspace --resource-group myResourceGroup --account-name 
<your-account-name> --container-name <your-container-name>



Chapter 6 135

2.	 Register a dataset:

az ml data create --name mydataset --path <your-dataset-path> 
--type uri_file --workspace-name myMLWorkspace --resource-
group myResourceGroup

3.	 Version the dataset:

az ml data create-version --name mydataset --path <your-
dataset-path> --workspace-name myMLWorkspace --resource-group 
myResourceGroup

2.	 Experiment tracking: Creating experiments and tracking jobs is vital for reproducibility 

and governance. By logging metrics and keeping track of your experiments, you can ensure 

that your models are built on reliable and consistent data:

1.	  Create an experiment and a job:

az ml experiment create --name myexperiment --workspace-name 
myMLWorkspace --resource-group myResourceGroup

az ml job create --file myscript.yml --experiment-name 
myexperiment --workspace-name myMLWorkspace --resource-group 
myResourceGroup

2.	 Track metrics and logs (this is SDK code, which needs the Python SDK to be 

installed; please refer to https://learn.microsoft.com/en-us/azure/machine-
learning/concept-v2?view=azureml-api-2#azure-machine-learning-python-

sdk-v2):

import mlflow

from azure.ai.ml import MLClient

from azure.identity import DefaultAzureCredential

from azure.ai.ml.entities import Job

ml_client = MLClient(DefaultAzureCredential(), subscription_
id, resource_group, workspace_name)

job = Job(name="myexperiment", experiment_name="myexperiment", 
code="myscript.py")

run = ml_client.jobs.create_or_update(job)

# Start an MLflow run

mlflow.start_run(run_id=run.id)

https://learn.microsoft.com/en-us/azure/machine-learning/concept-v2?view=azureml-api-2#azure-machine-learning-python-sdk-v2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-v2?view=azureml-api-2#azure-machine-learning-python-sdk-v2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-v2?view=azureml-api-2#azure-machine-learning-python-sdk-v2


Capturing and Securing Governance Data for MLOps136

# Assuming you have your true labels and predicted labels

true_labels = <true_labels>

predicted_labels = <predicted_labels>

# Calculate the accuracy

accuracy = accuracy_score(true_labels, predicted_labels)

# End the MLflow run

mlflow.end_run()

3.	 Model registration and versioning: Registering and versioning your models helps in 

managing different versions of your models. This is important for governance as it allows 

you to keep track of model updates and ensure that you are using the correct version in 

production:

1.	  Register a model:

az ml model create --name mymodel --path outputs/
mymodel.pkl --workspace-name myMLWorkspace 
--resource-group myResourceGroup

2.	 Version the model (a similar model from the same experiment with some 

variation):

az ml model create --name mymodel -–version 2 
--path outputs/new_mymodel.pkl --workspace-name 
myMLWorkspace --resource-group myResourceGroup

4.	 Building and tracking pipelines: Creating and running pipelines helps in automating 

your ML workflows. This step ensures that each component of the workflow is executed 

in a consistent and reproducible manner, which is crucial for maintaining governance 

and traceability in MLOps:

1.	 Create a YAML file for your pipeline component (e.g., train_step.yml):

```yaml

$schema: https://azuremlschemas.azureedge.net/latest/
commandJob.schema.json

command: >

Chapter 6 137

 python train.py

environment: azureml:<your-environment>

inputs:

 input_data: <your-input-data>

outputs:

 output_data: <your-output-data>

```

2.	 Create a YAML file for your pipeline job (e.g., pipeline_job.yml):

```yaml

$schema: https://azuremlschemas.azureedge.net/latest/
pipelineJob.schema.json

jobs:

 train_step:

 type: command

 component: train_step.yml

```

3.	 Submit the pipeline job using the CLI:

```bash

az ml job create --file pipeline_job.yml --workspace-name
myMLWorkspace --resource-group myResourceGroup

```

5.	 Securing data and lineage information: Finally, securing your data and configuring access 

controls is crucial for governance. Enabling encryption and setting up RBAC ensures that 

your data is protected and only accessible to authorized users:

az storage account update --name <your-storage-account-name> 
--resource-group myResourceGroup --encryption-services blob

Configure access controls:

az role assignment create --assignee <your-assignee> --role "Storage 
Blob Data Contributor" --scope <your-scope>



Capturing and Securing Governance Data for MLOps138

6.	 Enabling diagnostic settings for the AML workspace: To explicitly capture audit logs 

and maintain a comprehensive audit trail, you can enable diagnostic settings in AML. This 

allows you to capture detailed information on access and changes to data and models. 

Although this is not part of the AML CLI explicitly, but in the Azure CLI, which is more 

generic. Here’s how you can do it:

az monitor diagnostic-settings create --name 
myDiagnosticSetting --resource /subscriptions/<subscription-
id>/resourceGroups/myResourceGroup/providers/Microsoft.
MachineLearningServices/workspaces/myMLWorkspace --workspace-id /
subscriptions/<subscription-id>/resourceGroups/myResourceGroup/
providers/Microsoft.OperationalInsights/workspaces/
myLogAnalyticsWorkspace --logs '[{"category": "AuditLogs", 
"enabled": true}]'

This command enables diagnostic settings for your AML workspace, capturing audit logs 

and sending them to a Log Analytics workspace. This ensures that all access and changes 

to data and models are logged, providing a comprehensive audit trail.

Now that we’ve walked through the hands-on steps of capturing and securing governance data 

in AML, let’s take a moment to visualize the entire process. The following illustration provides a 

comprehensive overview of the end-to-end workflow, highlighting each critical step from data 

ingestion to securing data and lineage information.

Putting the practice together
This visual representation in Figure 6.1 will help you understand how the comprehensive 

governance example fits into the overall governance framework, ensuring that your MLOps 

processes are well governed and secure.



Chapter 6 139

Figure 6.1 – Comprehensive governance process

By following these steps, you can maintain a clear lineage of your data and models, protect 

sensitive information, and ensure that only authorized personnel have access to critical resources.

The comprehensive governance process illustrated previously demonstrates how different aspects 

of MLOps governance come together in practice. From data ingestion to model deployment, each 

step builds upon established governance principles while leveraging Azure ML’s robust tooling. 

This integrated approach ensures the following:

•	 Complete traceability through automated logging and versioning

•	 Secure handling of sensitive data and model artifacts

•	 Compliance with regulatory requirements through proper documentation and access 

controls

•	 Quality assurance through systematic validation and testing

•	 Ethical consideration through bias detection and mitigation measures



Capturing and Securing Governance Data for MLOps140

Successfully implementing these governance practices not only protects your organization from 

risks but also builds trust in your ML systems and streamlines the overall MLOps workflow. Also, 

you can maintain a clear lineage of your data and models, protect sensitive information, and 

ensure that only authorized personnel have access to critical resources.

Summary
The chapter highlighted the tools and techniques available in AML to support governance, such 

as experiment tracking, model registry, and audit logs. We also emphasized the importance of 

securing data and lineage information, ensuring compliance with regulations, and maintaining 

high-quality standards in ML operations.

In the next chapter, we will build upon these governance principles and delve into the specifics 

of monitoring deployed models. This will include both functional and non-functional aspects 

such as operational metrics, data drift, concept drift, and alerting mechanisms.



7
Monitoring the ML Model

In this chapter, we will go through the critical aspects of monitoring Machine Learning (ML) 

models and their supporting infrastructure in AML. We begin by exploring the purpose and 

importance of monitoring in MLOps, highlighting its role in ensuring the continued reliability, 

performance, and efficiency of deployed ML solutions.

This chapter provides a comprehensive exploration of monitoring strategies essential for 

maintaining robust ML operations in AML. We’ll examine the critical distinction between model 

performance monitoring and infrastructure usage monitoring, introduce you to the DataCollector 

tool and its central role in tracking model behavior, and guide you through setting up data collection 

for your deployed models. You’ll learn how to configure monitoring processes using collected data 

and understand the key monitoring signals available in AML, including infrastructure metric 

monitoring at both the endpoint and deployment level. Mastering these monitoring concepts will 

enable you to proactively identify potential issues, maintain model reliability, optimize resource 

utilization, and ensure your ML solutions continue to deliver value in production environments. 

This knowledge forms the foundation for building trustworthy, scalable ML systems that can 

adapt and respond to changing conditions over time.

By the end of this chapter, you will have a comprehensive understanding of how to implement 

robust monitoring strategies for your ML models and infrastructure in AML, enabling you to 

maintain high-quality ML operations and quickly identify and address potential issues.



Monitoring the ML Model142

We will be covering the following main topics:

•	 The purpose of monitoring

•	 Monitoring: Model performance versus infrastructure

•	 Learning about DataCollector

•	 Setting up data collection

•	 Infrastructure metric monitoring

The purpose of monitoring
The primary goal of monitoring ML models and the associated infrastructure is to ensure the 

continued reliability, performance, and efficiency of the deployed solution. In production 

environments, various factors can impact model effectiveness, making it necessary to monitor 

several key areas. These include resource consumption, availability, security, and cost management. 

Each of these elements plays a role in keeping the system scalable, secure, and cost-effective:

•	 Monitor resource utilization: By continuously tracking CPU, memory, and storage usage, 

teams can ensure efficient resource allocation, avoid performance degradation, and 

identify potential bottlenecks that might affect the model’s responsiveness.

•	 Ensure high availability: Uptime is crucial for ML services, particularly those used 

in real-time applications. Monitoring the infrastructure ensures that systems remain 

highly available, with minimal downtime that could disrupt services or lead to missed 

opportunities.

•	 Security and access control: In a production environment, it is critical to monitor who has 

access to the infrastructure and the models. By tracking access controls, organizations can 

prevent unauthorized users from interacting with sensitive data or models, maintaining 

the security and integrity of the system.

•	 Cost optimization: Monitoring resource usage helps not only with performance but also 

with cost control. By analyzing usage patterns, teams can optimize their cloud resources, 

ensuring they are not over-provisioned, thereby reducing unnecessary spending.

Monitoring the performance and health of ML models and their supporting infrastructure is 

a critical aspect of MLOps. By understanding the distinction between these two monitoring 

categories, organizations can ensure their deployed ML solutions remain reliable, efficient, and 

aligned with business goals.

With this foundation in place, let’s dive deeper into the specifics of model performance monitoring 

and infrastructure usage monitoring in the context of AML.



Chapter 7 143

Monitoring: Model performance versus infrastructure
In the context of AML, effective monitoring falls into two main categories: model performance 

monitoring and infrastructure usage monitoring. Both are essential to ensure that ML solutions 

remain reliable, cost-effective, and aligned with business goals.

Model performance monitoring evaluates how well a deployed ML model performs its intended 

task over time. The primary goal is to ensure the model consistently delivers accurate predictions 

as it processes new data in production. This type of monitoring is crucial because ML models can 

face two common challenges in production:

•	 Data drift: This occurs when the statistical properties of the input data change over time. 

For example, if a model was trained on customer transaction data from 2020, but customer 

spending patterns significantly changed in 2024, the model may become less effective.

•	 Concept drift: This happens when the fundamental relationships between input features 

and target variables evolve. For instance, in a fraud detection model, fraudsters might 

develop new techniques that change the relationship between transaction patterns and 

fraudulent behavior.

By continuously monitoring model performance, organizations can detect these issues early and 

take corrective actions before they significantly impact business operations.

Central to this process in AML is DataCollector (covered in the following section), which is a 

versatile tool that captures data on model inputs, outputs, and predictions. By systematically 

gathering this data, it becomes possible to track drifts and detect performance degradation 

early. DataCollector allows data scientists to define monitoring signals such as accuracy, F1 score, 

precision, and recall, which act as Key Performance Indicators (KPIs) for evaluating the model’s 

real-time performance. Through continuous monitoring, organizations can swiftly identify 

anomalies or changes that might compromise the model’s effectiveness.

While model performance monitoring focuses on the accuracy and reliability of predictions, 

ensuring optimal system performance requires equal attention to the underlying computational 

resources that support these models.

Infrastructure usage monitoring
While model performance is essential, the infrastructure supporting the model must also be 

closely monitored. Infrastructure usage monitoring focuses on keeping track of computational 

resources—CPU, memory, storage, and network throughput—to ensure efficient utilization. 



Monitoring the ML Model144

This type of monitoring ensures the model can scale as required, provides insights into optimizing 

resource allocation, and supports cost management efforts. It also helps maintain system availability 

by detecting bottlenecks and preventing potential downtime due to resource exhaustion.

In addition, effective infrastructure monitoring in AML often involves integrating with Azure 

Monitor and Log Analytics, which provide detailed metrics and logs on resource utilization, 

enabling alignment with broader cloud observability practices. Monitoring infrastructure also 

supports autoscaling decisions, ensuring model endpoints can dynamically handle variable loads 

while optimizing costs. To proactively manage system health, thresholds and alerting mechanisms 

are typically configured, allowing teams to detect and address resource exhaustion issues before 

they lead to downtime or degraded performance.

To implement effective model performance monitoring in AML, you need the right tools and 

processes in place. At the core of Azure ML’s monitoring capabilities is DataCollector, a powerful 

tool designed specifically for tracking and analyzing model behavior in production. Let’s explore 

how this essential component enables comprehensive model monitoring.

Learning about DataCollector
At the heart of Azure ML’s model performance monitoring is DataCollector, a powerful tool that 

enables comprehensive logging and tracking of both model inputs and outputs in real time. By 

centralizing data collection, DataCollector facilitates effective monitoring of model performance, 

enabling organizations to continuously evaluate key metrics and detect potential issues early.

With DataCollector as the core component, AML offers several tools that support effective model 

performance monitoring:

•	 Model monitoring setup: AML provides an intuitive interface for configuring model 

monitoring. Data scientists can define which performance metrics to track, such as 

accuracy, F1 score, precision, and recall, and set performance thresholds. The system can 

also be set up to trigger alerts whenever the monitored signals indicate deviations from 

expected behavior.

•	 Monitoring signals: These are predefined KPIs such as accuracy, F1 score, precision, 

and recall. AML also supports custom metrics to capture model-specific performance 

indicators, giving the flexibility to monitor what matters most for each deployment.

•	 Model-specific metrics and anomalies: AML enables deep exploration of model-specific 

metrics, making it easier to spot anomalies or identify performance degradation. This 

detailed insight ensures data scientists can take corrective actions when the model begins 

to underperform or drift.



Chapter 7 145

DataCollector itself offers several critical features that enhance its utility in model monitoring:

•	 Centralized data logging: DataCollector automatically logs and stores inference data (both 

inputs and outputs) in Azure Blob Storage, creating a central repository for performance 

analysis and governance.

•	 Flexible endpoint support: Whether using managed online endpoints or Kubernetes 

online endpoints, DataCollector works seamlessly, making it adaptable to various 

deployment environments.

•	 Deployment-level configuration: Users have granular control over what data is collected, 

with the ability to define and adjust data collection settings at the deployment level, 

ensuring that the system collects the most relevant information for each deployment.

•	 Comprehensive logging options: DataCollector supports both payload logging (which 

captures raw input and output data) and custom logging (allowing users to log specific 

data points of interest), giving flexibility in the depth of monitoring required for each model.

With these powerful features and capabilities, DataCollector provides a solid foundation for 

comprehensive model monitoring in AML. Now, let’s see how to implement these concepts in 

practice through a concrete example.

Setting up data collection
Now that we’ve covered the concept and features of DataCollector, let’s dive into a practical example 

to see how it works in a real-world scenario. In this section, we’ll walk through how to enable data 

collection while deploying a model to a managed online endpoint (MIR endpoint) in AML.

For this example, we’ll revisit the model deployment scenario from Chapter 5. The following is the 

deployment YAML used to create the deployment on an endpoint named iris-endpoint, with 

data collection enabled for both model inputs and outputs:

```yaml
$schema: https://azuremlschemas.azureedge.net/deployment-1.1.0.schema.json

name: iris-online-deployment
endpoint_name: iris-endpoint
model: azureml:iris_model:1
code_configuration:
 code: .
scoring_script: online_score.py
environment: azureml:iris_env:1

Monitoring the ML Model146

instance_type: Standard_F2s_v2
traffic:
 - deployment_name: iris-online-deployment
 percentage: 100

data_collector:
 collections:
 model_inputs:
 enabled: ‘True’
 model_outputs:
 enabled: ‘True’

```

Let’s break down the data_collector section in the configuration file. Under collections, two 

types of data are being collected:

•	 model_inputs: This is set to collect the input data sent to the model.

•	 model_outputs: This is set to collect the output data (predictions) from the model.

Both model_inputs and model_outputs have their enabled flag set to True, which means 

DataCollector will log both the input data sent to the model and the output predictions from 

the model.

This configuration enables comprehensive logging of the model’s inference data. When deployed, 

this setup will do the following:

•	 Capture all input data sent to the model for inference

•	 Capture all output predictions generated by the model

•	 Automatically store this logged data in Azure Blob Storage

By collecting this data, organizations can maintain better control over their deployed models, 

ensure their continued effectiveness and reliability, and quickly respond to any issues or changes 

in the production environment. This proactive approach to model monitoring and governance is 

crucial for maintaining trust in ML systems and ensuring their long-term success and compliance 

in real-world applications.

Now that we have set up data collection during model deployment, the next step is to utilize 

this collected data effectively for monitoring and performance analysis. In the following section, 

we’ll explore how to set up monitoring using the data captured by DataCollector to track model 

health and behavior in production.



Chapter 7 147

Setting up monitoring with collected data
With DataCollector capturing both input and output data from your deployed model, the next 

step is to implement a monitoring system that leverages this collected data to track KPIs over time. 

Monitoring allows you to detect data drift, prediction drift, and other model-specific anomalies 

by comparing live production data with historical or training data.

In the following example, we will use credit_model, which predicts credit approval outcomes 

using features such as credit limit, age, bill amounts, payment history, gender, education, marital 

status, and past payment statuses. We will set up a monitoring process that feeds on the inference 

data collected by DataCollector and evaluates it on a daily basis. This process helps ensure that 

the model continues to perform effectively in production, providing early warning signals for 

any potential issues, such as data drift. The collected data is stored in the default workspace Blob 

Storage, and the monitoring setup is configured as follows.

Let’s break down this monitoring configuration step by step to understand each component:

1.	 Step 1 – basic job configuration: We begin by defining the monitoring job’s basic properties, 

setting a clear name, display name, and description, and specifying a daily schedule to 

automate monitoring at a consistent time each day:

name: model_performance_monitoring

display_name: Model performance monitoring

description: Monitor model prediction performance

trigger:

  # perform model monitoring activity daily at 5:00am

  type: recurrence

  frequency: day

  interval: 1

  schedule:

    hours: 5

    minutes: 0

This section defines the monitoring job’s basic properties and sets up a daily schedule 

to run at 5:00 A.M.



Monitoring the ML Model148

2.	 Step 2 – compute and target configuration: Next, we configure the compute resources 

that will execute the monitoring job and specify the deployment target for monitoring, 

ensuring the job runs with the appropriate resources and knows which model to track:

create_monitor:

  compute:

    instance_type: Standard_F2s_v2

    runtime_version: “3.3”

  monitoring_target:

    ml_task: classification

    endpoint_deployment_id: azureml:credit-default-ut:main

Here, we specify the compute resources for running the monitoring job and identify the 

target deployment to monitor.

3.	 Step 3 – data drift monitoring: In this step, we set up data drift monitoring by comparing 

the production data collected by DataCollector with the baseline training data, enabling 

us to detect changes in input data distributions over time:

  monitoring_signals:

    data_drift: # monitoring data drift

      type: data_drift

      production_data:

        input_data:

          path: azureml:credit_model_inputs:1  # the production data                                               

# collected by

                                               # data_collector

          type: uri_folder

        data_context: model_inputs

        pre_processing_component: azureml:credit_data_preprocessing: 
1 # Optional, if preprocessing steps are applied

      reference_data:

        input_data:

          path: azureml:credit_training_data:1 # use training data

                                               # as a baseline for

                                               # drift

          type: mltable

        data_context: training

      features:



Chapter 7 149

        top_n_feature_importance: 23 # monitor drift for all

                                     # features in the training data                                     

# set

      metric_thresholds:

        numerical:

          jensen_shannon_distance: 0.01 # threshold for numerical

                                        # feature drift detection

This configures data drift monitoring by comparing production data (collected by 

DataCollector) against training data as a baseline.

4.	 Step 4 – prediction drift monitoring: Following data drift, we configure prediction drift 

monitoring to track changes in the model’s output predictions by comparing current 

outputs against validation data, providing visibility into shifts in prediction behavior:

    prediction_drift: # monitoring prediction drift

      type: prediction_drift

      production_data:

        input_data:

          path: azureml:iris_model_outputs:1  # the production

                                              # outputs collected by                                              

                                              # data_collector

          type: uri_folder

        data_context: model_outputs

        pre_processing_component: azureml:iris_output_
preprocessing:1 # Optional

      reference_data:

        input_data:

          path: azureml:iris_validation_data:1 # use validation data

                                               # as a baseline for

                                               # output drift

          type: mltable

        data_context: validation

      metric_thresholds:

        categorical:

          pearsons_chi_squared_test: 0.02 # threshold for

                                          # categorical output drift                                          

                                          # detection



Monitoring the ML Model150

This section monitors changes in model predictions by comparing current outputs with 

validation data.

5.	 Step 5 – data quality monitoring: We then set up data quality monitoring to detect issues 

such as missing values and outliers in the input data, ensuring the data feeding the model 

remains reliable for inference:

    data_quality: # monitoring data quality

      type: data_quality

      production_data:

        input_data:

          path: azureml:credit_model_inputs:1  # the production data

                                               # collected by

                                               # data_collector

          type: uri_folder

        data_context: model_inputs

      reference_data:

        input_data:

          path: azureml:credit_training_data:1 # use training data

                                               # as a baseline for

                                               # quality

          type: mltable

        data_context: training

      features:

        top_n_feature_importance: 23 # monitor quality for all

                                     # features in the training

                                     # dataset

      metric_thresholds:

        numerical:

          missing_values: 0.05 # threshold for missing values

                               # detection

          outliers: 0.05 # threshold for outliers detection

This monitors data quality issues such as missing values and outliers in the production 

data.



Chapter 7 151

6.	 Step 6 – alert configuration: Finally, we configure alert notifications to ensure the relevant 

stakeholders are informed promptly if monitoring thresholds are breached, enabling the 

proactive remediation of detected issues:

  alert_notification: # this will be used to send job execution

                      # information

    emails:

      - example@example.com

This sets up email notifications when monitoring thresholds are breached.

In simple terms, this setup creates a monitoring job schedule that runs every day at 5:00 A.M. The 

job checks whether the data being used by the model and the model’s predictions have changed 

compared to the original data. It uses built-in tools in AML to do the calculations and then saves 

the results so you can review them or get alerted if something unusual happens. We will discuss 

more on alerting in the next chapter, Chapter 8, Notification and Alerting in MLOps. Figure 7.1 

summarizes the whole process in a simplified manner.

Figure 7.1 – DataCollector and monitoring go hand in hand

After the monitoring jobs are scheduled and run, the signals can be viewed in the AML portal by 

navigating to the workspace and selecting Monitoring from the left-hand menu.



Monitoring the ML Model152

Figure 7.2 – Signal overview in the AML portal

If we select one signal, say, data_drift, it shows more detail on which features are showing signs 

of drift. For example, in the next screenshot, we can see that we drilled inside data_drift and 

selected a feature named PAY_AMT4, and it shows significant drift in data when compared with 

training data and production.



Chapter 7 153

Figure 7.3 – data_drift signal detail

In the setup example, we demonstrated how to configure basic monitoring for a credit model 

using DataCollector’s captured data. This configuration enables daily monitoring of data drift, 

prediction drift, and data quality, with automated alerts when issues are detected. The monitoring 

dashboard (Figure 7.3) provides a clear visualization of these metrics, allowing teams to quickly 

identify and respond to potential problems.

Key monitoring signals in AML
Although the previous example is a simple one, it can be expanded to handle more complex 

and advanced monitoring needs. It is beneficial to understand the full range of monitoring 

signals available in AML. For instance, it can include other monitoring types, as shown in Figure 

7.2, or even incorporate custom monitoring setups. For more details, refer to https://learn.
microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-

api-2&viewFallbackFrom=azureml-api-1.

https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2&viewFallbackFrom=azureml-api-1
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2&viewFallbackFrom=azureml-api-1
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2&viewFallbackFrom=azureml-api-1


Monitoring the ML Model154

AML provides several key monitoring categories that help ensure comprehensive oversight of 

your ML models:

•	 Data quality monitoring:

•	 Helps detect issues in input data quality, such as missing values, outliers, or 

unexpected data patterns

•	 Essential for maintaining the reliability of model predictions

•	 Data drift detection:

•	 Tracks changes in the statistical properties of input features

•	 Helps identify when model retraining might be necessary due to evolving data 

patterns

•	 Prediction drift analysis:

•	 Monitors changes in model output distributions

•	 Useful for detecting unexpected shifts in model behavior

•	 Feature attribution drift:

•	 Feature attribution refers to how much each input feature contributes to a model’s 

prediction

•	 Examines changes in feature importance over time

•	 Helps understand whether the relationship between features and predictions is 

changing

•	 Custom metric monitoring:

•	 Allows teams to define and track metrics specific to their use case

•	 Provides flexibility in monitoring business-specific KPIs

•	 Model bias monitoring:

•	 Tracks fairness metrics across different demographic groups or data segments

•	 Helps ensure equitable model performance and compliance with fairness 

requirements

For detailed implementation guidance and advanced configuration options, we recommend 

referring to the official AML documentation on model monitoring (https://learn.microsoft.

com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2).

https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-model-monitoring?view=azureml-api-2


Chapter 7 155

This section focused on model performance monitoring, which primarily validates business logic. 

While it’s possible to collect custom infrastructure performance data using custom collectors, 

Azure provides built-in support for monitoring basic infrastructure metrics, which we’ll explore 

in the next section.

Infrastructure metric monitoring
While the previous section focused on monitoring aspects crucial to data scientists and ML 

engineers—such as model performance, data drift, and concept drift—this section delves into 

the operational side of monitoring. Specifically, we will explore infrastructure metrics that are 

critical for MLOps engineers to ensure smooth deployment and efficient resource utilization. 

These metrics provide visibility into how the model deployments are performing in terms of 

infrastructure health, scaling, and request handling.

In AML, monitoring infrastructure is typically done at two key levels.

Endpoint metrics
The endpoint is the entry point for sending inference requests. Multiple deployments can 

exist behind a single endpoint, and traffic can be managed between them based on specific 

configurations. Key metrics here focus on inference traffic and performance:

•	 Requests per second (RPS): Measures the volume of incoming requests to the endpoint

•	 Request latency: Tracks the time it takes for a request to be processed and responded to

•	 Success/error rate: Indicates the success or failure rate of the requests made to the 

endpoint

•	 Traffic distribution: If the endpoint is routing traffic to multiple deployments, this tracks 

how traffic is being split among them

These metrics give MLOps engineers insights into the health and performance of the endpoint 

handling inference requests. Figure 7.4 shows an example of how key infrastructure metrics—

such as request rates and latency—are displayed in the Azure portal for monitoring endpoint 

performance.



Monitoring the ML Model156

 

Figure 7.4 – Monitoring endpoint metrics in the Azure portal

Just as endpoint metrics provide insights into how inference requests are handled at the entry 

point, deployment metrics focus on the performance of the underlying infrastructure that powers 

the model inference.

Deployment metrics
Deployments are responsible for performing the actual model inference and involve the underlying 

infrastructure. These metrics are tied to resource usage and system health:

•	 CPU utilization: Monitors the amount of CPU resources consumed by the deployment 

during inference

•	 GPU utilization: Relevant for deployments using GPU-based models, this tracks GPU 

resource usage

•	 Memory utilization: Measures the amount of RAM consumed by the deployment

•	 Disk utilization: Tracks disk I/O and storage usage, which is especially useful for 

deployments requiring large amounts of temporary storage

•	 Request-specific metrics: Like endpoint metrics, but specific to each deployment (RPS, 

latency, and error rates)



Chapter 7 157

These metrics are crucial for understanding resource utilization, such as CPU, GPU, memory, 

and disk usage, as well as deployment-specific request metrics. Figure 7.5 illustrates how these 

deployment metrics are displayed in the Azure portal, providing visibility into the health and 

efficiency of each deployment:

Figure 7.5 – Monitoring deployment metrics in the Azure portal

These infrastructure metrics, at both the endpoint and deployment levels, provide MLOps 

engineers with comprehensive visibility into their model’s operational health. By monitoring 

these metrics continuously, teams can do the following:

•	 Proactively identify and address performance bottlenecks

•	 Optimize resource allocation and costs

•	 Ensure high availability and reliability of deployed models

•	 Make data-driven decisions about scaling and infrastructure improvements

When combined with the model performance monitoring that we discussed earlier, these 

infrastructure metrics complete the monitoring picture, enabling organizations to maintain 

robust and efficient ML operations in production.

Summary
This chapter explored the critical role of monitoring in maintaining effective and reliable ML 

models in production environments. We examined two main categories of monitoring in AML: 

model performance monitoring and infrastructure usage monitoring.



Monitoring the ML Model158

We discussed the DataCollector tool, central to Azure ML’s model performance monitoring, and 

provided practical examples of setting up data collection and monitoring processes. The chapter 

covered key monitoring signals in AML and explored infrastructure metric monitoring at both 

the endpoint and deployment levels.

Best practices for implementing effective monitoring strategies in MLOps were outlined, 

emphasizing clear objectives, regular review, collaboration, and robust alerting systems.

In the next chapter, we will build upon these concepts by exploring notification and alerting 

in MLOps, covering how to set up effective alert mechanisms that leverage monitoring data to 

ensure timely responses to issues or threshold breaches.

Join the CloudPro Newsletter with 44000+ 
Subscribers
Want to know what’s happening in cloud computing, DevOps, IT administration, networking, 

and more? Scan the QR code to subscribe to CloudPro, our weekly newsletter for 44,000+ tech 

professionals who want to stay informed and ahead of the curve.

https://packt.link/cloudpro

https://packt.link/cloudpro


8
Notification and Alerting 
in MLOps

In the dynamic world of machine learning operations (MLOps), staying informed about critical 

events and changes is paramount to maintaining efficient and reliable systems. This chapter delves 

into the crucial aspect of notification and alerting within the MLOps framework, building upon 

the monitoring concepts discussed in the previous chapter. As ML models become increasingly 

integral to business operations, the ability to respond promptly to various events throughout the 

ML lifecycle becomes a key differentiator in operational excellence.

This chapter will guide you through the process of setting up comprehensive notification 

and alerting systems tailored for MLOps. We’ll explore the available AML lifecycle events and 

demonstrate how to leverage basic alerting capabilities within individual workspaces. From there, 

we’ll advance to implementing cross-workspace alerting for enterprise-scale monitoring, followed 

by advanced notification techniques using email and webhooks. Finally, we’ll cover best practices 

for alert management to ensure your system remains effective without overwhelming your team.

Through practical examples and in-depth explanations, this chapter will equip you with the 

skills to create a responsive and efficient MLOps ecosystem, ensuring timely interventions and 

streamlined workflow management.

In this chapter, we’ll identify key events relevant to our ML processes and map them to our 

operational requirements. From there, we will demonstrate how to set up alerts for specific events 

within a single workspace.



Notification and Alerting in MLOps160

We will be covering the following main headings in this chapter:

•	 Understanding alerts and notifications in the MLOps context

•	 Exploring AML platform logs

•	 Creating an alert

•	 Extending alerts to multiple workspaces

•	 Advanced alerting

•	 Best practices for alert management

Understanding alerts and notifications in the MLOps 
context
Before diving into implementation, let’s establish some key concepts:

•	 Alerts are automated triggers that fire when specific conditions or thresholds are met in 

your ML systems, such as model performance degradation or deployment failures.

•	 Notifications are the delivery mechanisms that inform relevant stakeholders about these 

alerts through channels such as email, SMS, or integration tools.

In MLOps, effective alerting serves as an early warning system that enables proactive intervention 

before minor issues escalate into critical operational problems.

Throughout the ML lifecycle—from training to inferencing—various events are continuously 

generated and stored within the AML platform. These events are primarily logged by Azure’s 

built-in platform capabilities and can be accessed by querying the event store.

To effectively set up alerts, it is essential to understand where these signals originate and how 

to access them within AML. In the next section, we will explore the platform logs that capture 

these critical events throughout your ML workflows.

Exploring AML platform logs
To start, navigate to your AML workspace in the portal and go to the Monitoring section, and 

select Logs. From here, you can choose Tables and select AzureActivity Logs. These logs capture 

all activities occurring on the Azure resources, including the ML workspace. You can quickly run 

a KQL query to view any failed operations in the past 24 hours, as illustrated in Figure 8.1:



Chapter 8 161

Figure 8.1 – Exploring MLOps events using a KQL query

The role of MLOps engineers focuses on understanding the nature of failures throughout the ML 

lifecycle and tracking critical events to ensure smooth operations. Monitoring trends and setting 

up alerts for these key events allows teams to keep the operational metrics healthy and address 

any issues promptly.

The following table highlights some typical AML events that are essential to track from a 

monitoring and alerting perspective:

Operation name Purpose

MICROSOFT.MACHINELEARNINGSERVICES/WORKSPACES/
JOBS/WRITE Experiment run

MICROSOFT.MACHINELEARNINGSERVICES/WORKSPACES/
MODELS/VERSIONS/WRITE

Register the model

MICROSOFT.MACHINELEARNINGSERVICES/WORKSPACES/
ONLINEENDPOINTS/DEPLOYMENTS/WRITE

Deploy the model for online inference

MICROSOFT.MACHINELEARNINGSERVICES/WORKSPACES/
BATCHENDPOINTS/DEPLOYMENTS/WRITE Deploy the model for batch inference

Table 8.1 – Key AML operations for MLOps monitoring and alerting



Notification and Alerting in MLOps162

By tracking and analyzing these events, organizations can stay on top of any failures or anomalies. 

For example, examining a model deployment failure for online inference provides valuable insights. 

Figure 8.2 shows a failure and details the errors. This information is crucial in helping teams 

understand why the failure occurred and take corrective action promptly.

Figure 8.2 – Example details of a deployment failure operation

Now that we have a clearer understanding of failure events and their importance in maintaining 

healthy operations, let’s move forward with setting up an alert on this particular type of failure 

to notify us when such failures occur.

Creating an alert
To ensure the timely detection of issues, we can create a rule to trigger an alert when a specific 

failure threshold is met. For further details on Azure Monitor alerts, you can refer to the following 

link: https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-overview.

https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-overview


Chapter 8 163

Navigate to your AML workspace in the portal, go to the Monitoring section, and select the Alerts 

option. This will allow you to define your alerting logic. Using the query from Figure 8.2, let’s 

assume that if 10 model deployments for an online endpoint fail in a single day, an Ops engineer 

should be notified to act.

Create a custom alert with the name MonitorOnlineDeploymentFailures, which will send a 

notification (via email or SMS) when this threshold is reached. These notification preferences, 

along with other details, can be configured during the alert setup, as shown in the following figure:

Figure 8.3 – Creating an alert on deployment failure count



Notification and Alerting in MLOps164

Here, we define the following key elements:

•	 Search query: The query filters the logs to show only failure events for model deployments 

(OperationNameValue == "MICROSOFT.MACHINELEARNINGSERVICES/WORKSPACES/

ONLINEENDPOINTS/DEPLOYMENTS/WRITE"). This helps narrow down failures specific to 

online endpoint model deployments.

•	 Measurement: The alert is set to count the number of failed operations over a 5-minute 

interval.

•	 Alert logic: An alert is triggered when the number of failed deployments exceeds 10 within 

a 5-minute window, notifying the relevant Ops engineers.

Once configured, this alert ensures that any significant issues in the model deployment process 

are caught and handled quickly.

Figure 8.4 shows a sample alert fired and delivered to the email address it was configured with. 

It has some important information regarding the alert, as shown, including the time, signal type, 

workspace name, and so on:

Figure 8.4 – An alert email



Chapter 8 165

The alert email includes a link labeled Investigate. This is an important feature that provides more 

in-depth information. In this scenario, Azure’s ML capabilities are leveraged to automatically 

correlate relevant data points from around the time of the alert. This feature offers a summarized 

view of what might have led to the issue, which serves as an excellent starting point for any Ops 

engineer conducting a root cause analysis.

By utilizing this feature, you can gain immediate insights into the broader context of the failure, 

enabling faster troubleshooting, recommendations, and resolution, as shown in Figure 8.5:

Figure 8.5 – Autocorrelation/analysis of the alert

In this section, we covered the basics of setting up alerting mechanisms in AML and demonstrated 

how to make them actionable through practical examples. This provides a solid foundation for 

monitoring key events and responding to failures. As you become more familiar with Azure’s 

capabilities, you can extend these concepts by designing more sophisticated monitoring solutions. 

Depending on your alerting needs, you can craft complex KQL queries and leverage advanced 

logic to meet intricate monitoring requirements, ensuring robust MLOps practices.



Notification and Alerting in MLOps166

With a solid alerting system in place for a single AML workspace, the next step is to expand this 

capability across multiple workspaces within your organization, enabling broader monitoring 

and centralized control.

Extending alerts to multiple workspaces
Having established a robust alerting system for a single AML workspace, the next logical step is 

to extend this setup to multiple workspaces within an organization. This is where the concept 

of a Log Analytics workspace becomes essential.

Introduction to Log Analytics workspaces
A Log Analytics workspace acts as a centralized hub for collecting, storing, and analyzing log 

data from various sources, including multiple AML workspaces. By consolidating events from 

different workspaces into a single Log Analytics workspace, you gain a unified view of your ML 

operations, streamlining the process of monitoring, analyzing, and responding to critical events 

across your organization.

In this section, we’ll explore how to configure a Log Analytics workspace to collect data from 

multiple AML workspaces. Once the data is centralized, you can apply the same alerting 

logic you used for a single workspace, but with enhanced control over event aggregation and 

monitoring. For detailed instructions on setting up a Log Analytics workspace, refer to the official 

guide (https://learn.microsoft.com/en-us/azure/azure-monitor/logs/quick-create-

workspace?tabs=azure-portal).

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/quick-create-workspace?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/quick-create-workspace?tabs=azure-portal


Chapter 8 167

Configuring centralized collection
In Figure 8.3, we demonstrated how to set up alerts based on the outcome of a log query for a 

single workspace. Now, let’s expand this concept to cover multiple workspaces.

The first step is to configure the export of activity logs. Navigate to Activity log from the left-hand 

navigation bar and select Export Activity Logs, as shown in Figure 8.6:

Figure 8.6 – Export Activity Logs



Notification and Alerting in MLOps168

After selecting the export option, you’ll need to specify which logs to export and their destination. 

Figure 8.7 shows the configuration panel where you can select the Log Analytics workspace as 

your destination and choose the relevant log categories to export:

Figure 8.7 – Choosing logs and destination

The key difference here is that, previously, the alert was configured directly within an individual 

workspace. Now, we are sending the same logs from each workspace to a Log Analytics workspace, 

which is configured to aggregate logs from multiple workspaces. This setup enables centralized 

monitoring across all relevant workspaces, provided each workspace is configured accordingly.

Once this setup is complete, you can run the same query on the Log Analytics workspace and see 

aggregated logs from all connected workspaces, as shown in Figure 8.8:



Chapter 8 169

Figure 8.8 – Discovering the exported logs from the Log Analytics workspace

With the centralized collection of logs from multiple workspaces in place, let’s now explore some 

more advanced alerting techniques.

Advanced alerting
While Azure’s native alerting system provides a robust solution for monitoring ML lifecycle events 

across multiple workspaces, there are more advanced approaches that can further enhance your 

MLOps alerting strategy. These advanced solutions often involve integrating third-party providers 

and exporting logs and metrics, including model performance data (discussed in the previous 

chapter), to external systems for deeper analysis and complex alerting logic.

One such method is exporting logs to external storage, such as Azure Blob Storage, which enables 

more flexibility in how you store, analyze, and trigger alerts. By sending logs and metrics from 

multiple workspaces to Blob Storage, you can enable the following:

•	 Advanced log analysis: External systems or third-party analytics platforms can ingest 

these logs, allowing you to define more sophisticated alerting logic. This could include 

anomaly detection, custom thresholds, or analysis across different time periods.

•	 Complex alerting logic: You can build alerts that go beyond simple thresholds, 

incorporating advanced statistical models or even ML to predict failures or identify 

trends across multiple workspaces. These advanced alerts can help you detect unusual 

behavior in model training, deployment, or performance at an early stage, preventing 

larger operational issues.



Notification and Alerting in MLOps170

•	 Webhook integrations: Webhooks can be used to trigger real-time alerts or automated 

actions based on specific events. For example, integrating with a third-party provider 

through webhooks allows you to send custom notifications to your incident management 

tool, or even trigger an automated response, such as rolling back a deployment or spinning 

up additional resources.

•	 ML for alerting: A more sophisticated approach involves using ML models to analyze 

the collected logs and trends. By leveraging ML, you can predict potential issues before 

they happen or identify correlations between different events in the MLOps lifecycle that 

traditional alerts might miss.

These advanced alerting solutions provide more granular control and deeper insights into the 

entire MLOps process, giving you better optics on key events and helping you proactively manage 

and optimize the lifecycle of your ML models.

Integrating alerts with incident management
To maximize the effectiveness of your MLOps alerting system, integrate alerts directly with your 

organization’s incident management workflow. This integration ensures that alerts don’t just 

notify but also trigger appropriate response processes. The integration approach includes the 

following:

•	 Automated ticket creation: Configure critical alerts to automatically create incidents in 

your IT Service Management (ITSM) platform (ServiceNow, Jira Service Management, etc.).

•	 Escalation workflows: Route different alert severities to appropriate teams, such as model 

performance issues to data science teams and infrastructure failures to DevOps teams.

•	 Status page integration: Automatically update customer-facing status pages when ML 

services are impacted.

•	 Runbook automation: Link alerts to automated remediation scripts or clear manual 

runbooks that responders can follow.

This integration transforms alerts from simple notifications into actionable incidents with clear 

ownership and resolution paths.

Best practices for alert management
Effective alert management is crucial for maintaining a responsive and efficient MLOps 

environment. However, poorly configured alerts can lead to alert fatigue, overwhelming your 

team with notifications and potentially causing important issues to be overlooked. This section 

will cover best practices for setting alert thresholds and strategies to avoid alert fatigue.



Chapter 8 171

Setting appropriate alert thresholds
When configuring alert thresholds, there are several best practices to consider:

•	 Understand your baseline: Before setting thresholds, monitor your systems for a period 

to understand normal behavior. This baseline will help you distinguish between regular 

fluctuations and genuine issues.

•	 Start conservative: Begin with wider thresholds and gradually tighten them as you gain 

more insights into your system’s behavior. This approach helps avoid an initial flood of 

false positives.

•	 Use dynamic thresholds: Where possible, implement dynamic thresholds that adjust 

based on historical data. This is particularly useful for metrics that have predictable 

patterns, such as model training times that vary with dataset size.

•	 Consider time windows: Instead of alerting on single data points, consider using time 

windows. For example, alert when a metric exceeds a threshold for 15 minutes, rather 

than triggering on a momentary spike.

•	 Implement graduated thresholds: Set up multiple thresholds for the same metric with 

different severity levels, such as the following:

•	 Warning: Model accuracy drops below 95%

•	 Critical: Model accuracy drops below 90%

•	 Regular review and adjustment: Periodically review your alert thresholds and adjust 

them based on real-world performance and feedback from your team.

While these strategies help ensure that your alerts are properly calibrated, it’s also crucial to 

address the issue of alert fatigue.

Avoiding alert fatigue
Alert fatigue occurs when teams are bombarded with too many notifications, causing them to 

become desensitized and less responsive to important alerts. To prevent alert fatigue, consider 

implementing the following best practices:

•	 Prioritize alerts: Categorize alerts by severity and impact. Ensure that high-priority alerts 

stand out and are routed to the appropriate team members.

•	 Implement alert correlation: Use tools or custom logic to group related alerts. This 

prevents a single issue from triggering multiple notifications.



Notification and Alerting in MLOps172

•	 Use smart notifications: Implement escalation policies that start with less intrusive 

notifications (e.g., Slack messages) before moving to more urgent methods (e.g., phone 

calls) if the issue persists.

•	 Implement alert suppression: For known issues or during maintenance windows, 

suppress alerts to avoid unnecessary notifications.

•	 Create clear alert descriptions: Each alert should clearly describe the problem and its 

potential impact, and suggest the next steps. This helps recipients quickly understand 

and act on the alert.

•	 Establish a “no-alert” culture: Encourage your team to question and refine alerts. If an 

alert consistently doesn’t require action, it should be modified or removed.

•	 Use runbooks: Develop and maintain runbooks for common alerts. These step-by-step 

guides can help reduce response time and standardize issue resolution.

•	 Implement alert analytics: Regularly analyze your alert data to identify patterns. This 

can help you refine your alerting strategy and potentially address recurring issues at their 

root cause.

Implementing these strategies will help maintain alert effectiveness while preventing notification 

overload that can compromise your team’s responsiveness.

Example: Refining model deployment failure alerts
Let’s revisit our earlier example of alerting on model deployment failures and apply these best 

practices:

•	 Baseline understanding: After monitoring for a month, you notice that having one or two 

deployment failures per day is normal due to various non-critical reasons.

•	 Graduated thresholds:

•	 Warning alert: More than 5 deployment failures in 24 hours

•	 Critical alert: More than 10 deployment failures in 24 hours, or 5 failures of the 

same model

•	 Time window: Instead of alerting on each failure, trigger alerts based on the number of 

failures within a 24-hour rolling window.

•	 Alert correlation: Group alerts for failures of the same model or with similar error messages.



Chapter 8 173

•	 Clear description: “Multiple model deployment failures detected. 7 failures in the last 24 

hours, exceeding the warning threshold of 5. Check the attached log analysis for common 

error patterns.”

•	 Runbook link: Include a link to a runbook with steps to investigate common deployment 

failure causes and resolution steps.

By applying these practices, you create a more nuanced alerting system that reduces noise while 

ensuring that significant issues are promptly addressed. Remember, the goal is to strike a balance 

between being informed of important events and not overwhelming your team with unnecessary 

alerts.

Regular reviews and adjustments of your alerting strategy, combined with feedback from your 

MLOps team, will help you maintain an effective and efficient notification system that supports 

your ML operations.

Summary
In this chapter, we’ve explored the critical role of notification and alerting in MLOps, from 

understanding AML lifecycle events to implementing advanced, cross-workspace alerting 

strategies. By leveraging Azure’s capabilities and following best practices, you can build a 

responsive alerting system that provides actionable insights, enables quick issue resolution, 

and supports continuous improvement. Remember, effective alerting is about striking the right 

balance – staying informed without succumbing to alert fatigue. As your MLOps practices evolve, 

regularly refine your alerting approach to maintain operational excellence in your ML lifecycle.

As you build a responsive alerting system to maintain visibility and control, the next step is to 

streamline and automate your ML workflows for consistent, efficient operations. In the next 

chapter, we will explore how to achieve this using AML pipelines and GitHub workflows.





Part 3 
MLOps and Beyond

This final part focuses on automating the ML lifecycle and translating MLOps practices into real-

world business impact. You will learn how to build automated pipelines and CI/CD workflows 

using AML pipelines and GitHub Actions, ensuring consistent, reproducible, and scalable 

operations. The part then shifts to practical applications, demonstrating how to use models in 

production environments through case studies across Azure, AWS, and GCP, giving you insights 

into multi-cloud MLOps strategies. Finally, you will explore next-generation MLOps, including 

operationalizing large language models, preparing you to extend your MLOps expertise into 

cutting-edge AI deployments. This part empowers you to implement, manage, and scale MLOps 

in complex, production-grade environments confidently.

This part has the following chapters:

•	 Chapter 9, Automating the ML Lifecycle with ML Pipelines and GitHub Workflows

•	 Chapter 10, Using Models in Real-world Applications

•	 Chapter 11, Exploring Next-Gen MLOps





9
Automating the ML Lifecycle 
with ML Pipelines and GitHub 
Workflows

Machine learning pipelines are the backbone of efficient, reproducible, and scalable ML workflows. 

In this chapter, we’ll dive deep into the world of ML pipelines, exploring how they can be 

implemented across multiple cloud platforms to create robust, end-to-end solutions. We’ll build 

upon the concepts of components and pipelines introduced in Chapter 3, taking them to the next 

level with real-world applications and advanced CI/CD strategies.

In Chapter 3, we introduced the concepts of components and pipelines to build machine learning 

workflows, along with a few practical examples. In this chapter, we will expand on those 

foundations by demonstrating how to construct an end-to-end workflow that begins with data 

ingestion and transformation and progresses through to model deployment. We will also explore 

scenarios where AML pipelines may need to be complemented with GitHub Actions to enable 

robust CI/CD practices.

You’ll learn how to automate and streamline the various phases of the ML lifecycle using AML 

pipelines within the Azure ecosystem. We will then move beyond AML pipelines to address more 

complex, real-world cases that require multi-cloud support and advanced CI/CD orchestration, 

illustrating how GitHub Actions can be integrated to build scalable and maintainable MLOps 

workflows.



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows178

By the end of this chapter, you’ll be equipped to design and implement sophisticated multi-cloud 

ML pipelines. You’ll understand how to leverage the strengths of different cloud providers such 

as Azure, AWS, and GCP in a single, cohesive workflow. This knowledge will enable you to build 

highly available, compliant, and scalable ML solutions that can meet the demands of enterprise-

level applications.

These skills are essential for MLOps engineers and data scientists who want to take their ML 

workflows to the next level, ensuring robustness, reproducibility, and scalability across diverse 

cloud environments.

In this chapter, we’re going to cover the following main topics:

•	 Implementing end-to-end AML pipelines

•	 Real-world scenario: Multi-cloud CI/CD for ML workflows

•	 Challenges and best practices

While previous chapters focused primarily on AML, this chapter expands beyond single-cloud 

approaches to demonstrate enterprise-grade MLOps workflows. Many organizations require 

multi-cloud strategies for compliance, redundancy, and avoiding vendor lock-in. We’ll start with 

AML pipelines and progressively show how GitHub Actions enables integration across multiple 

cloud providers.

Implementing end-to-end AML pipelines
Pipelines in Azure Machine Learning are workflows that stitch together various ML phases, such 

as data ingestion, preprocessing, feature engineering, model training, evaluation, and deployment, 

into an inferencing endpoint. They allow you to automate these steps, ensuring that each stage 

is executed in a consistent and reproducible manner.

We will be focusing on two different kinds of pipelines here: an AML pipeline, which is specific to 

AML, and then a CI/CD pipeline, which encompasses the AML pipeline and beyond that.

AML pipeline
Here’s an example of a YAML file that defines an end-to-end pipeline and schedules it using AML 

CLI v2. This example includes steps for data ingestion, preprocessing, model training, evaluation, 

and deployment to an inferencing endpoint:

$schema: https://azuremlschemas.azureedge.net/latest/pipelineJob.schema.
json



Chapter 9 179

name: ml-pipeline-job

description: End-to-end ML pipeline job

experiment_name: ml-pipeline-experiment

jobs:

  data_ingestion:

    type: command

    command: >

      python data_ingestion.py

    environment: azureml:AzureML-sklearn-0.24-ubuntu18.04-py37-cpu:1

    compute: azureml:cpu-cluster

  data_preprocessing:

    type: command

    command: >

      python data_preprocessing.py --input_data ${{inputs.data}}

    inputs:

      data:

        job_output_type: uri_file

        source: jobs.data_ingestion.outputs.output_data

    environment: azureml:AzureML-sklearn-0.24-ubuntu18.04-py37-cpu:1

    compute: azureml:cpu-cluster

  model_training:

    type: command

    command: >

      python train.py --input_data ${{inputs.preprocessed_data}}

    inputs:

      preprocessed_data:

        job_output_type: uri_file

        source: jobs.data_preprocessing.outputs.preprocessed_data

    environment: azureml:AzureML-pytorch-1.7-ubuntu18.04-py37-cpu:1

    compute: azureml:gpu-cluster

  model_evaluation:

    type: command

    command: >



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows180

      python evaluate.py --model ${{inputs.model}}

    inputs:

      model:

        job_output_type: uri_file

        source: jobs.model_training.outputs.model

    environment: azureml:AzureML-sklearn-0.24-ubuntu18.04-py37-cpu:1

    compute: azureml:cpu-cluster

  model_deployment:

    type: command

    command: >

      az ml model deploy --model ${{inputs.model}}

      --endpoint-name my-endpoint

    inputs:

      model:

        job_output_type: uri_file

        source: jobs.model_training.outputs.model

    environment: azureml:AzureML-sklearn-0.24-ubuntu18.04-py37-cpu:1

    compute: azureml:cpu-cluster

schedule:

  name: ml-pipeline-schedule

  description: Schedule for ML pipeline job

  trigger:

    type: recurrence

    frequency: day

    interval: 1

    start_time: '2024-10-19T00:00:00Z'

    time_zone: 'UTC'

This pipeline configuration defines five sequential jobs that execute in dependency order: data 

ingestion, preprocessing, training, evaluation, and deployment. Each job specifies its Python script, 

compute environment (CPU or GPU cluster), and data dependencies through the inputs section, 

which references outputs from previous jobs. The schedule section at the bottom automates daily 

execution at midnight UTC using a recurrence trigger.



Chapter 9 181

The following Azure CLI commands demonstrate the core operations:

az ml job create --file pipeline.yml

az ml schedule create --file pipeline.yml

These commands create a model registry entry, establish an online endpoint, and deploy the 

model for real-time inference. The --file flag references additional YAML configuration files 

that define deployment specifications.

While AML pipelines excel at orchestrating machine learning workflows within the Azure ecosystem, 

there are scenarios where expanding beyond this framework becomes necessary. GitHub Actions 

offers a more versatile approach for complex CI/CD requirements, especially in multi-cloud or 

hybrid deployments. Unlike AML pipelines, which are primarily focused on ML workflows, GitHub 

Actions can integrate with broader application components, manage deployments across multiple 

cloud providers, and offer more advanced customization for notifications and security checks. 

GitHub Actions also provides superior version control integration and can trigger workflows based 

on a wider range of events. By complementing AML pipelines with GitHub Actions, organizations 

can create more robust, flexible, and comprehensive MLOps workflows that extend beyond the 

boundaries of a single cloud platform.

Expanding beyond Azure: GitHub Actions for CI/CD
While AzureML pipelines are powerful and can handle a wide range of machine learning workflows, 

there are certain scenarios where GitHub Actions might be needed to complement AzureML 

pipelines:

•	 Complex CI/CD workflows: If you need to integrate your ML pipeline with a broader CI/

CD workflow that includes building, testing, and deploying other components of your 

application (for example, web services, databases), GitHub Actions can help orchestrate 

these tasks alongside your AzureML pipeline.

•	 Multi-cloud or hybrid deployments: If your deployment strategy involves multiple cloud 

providers or a hybrid environment, GitHub Actions can help manage and coordinate 

deployments across different platforms, ensuring seamless integration.

•	 Custom notifications and alerts: While AzureML provides basic notifications, GitHub 

Actions can offer more advanced and customizable notifications and alerts, such as sending 

messages to Slack, Teams, or other communication tools based on specific events in your 

pipeline.



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows182

•	 Advanced security and compliance checks: GitHub Actions can be used to run security 

and compliance checks on your code and models before they are deployed. This can include 

vulnerability scanning, license compliance checks, and more.

•	 Integration with external tools and services: If your workflow requires integration with 

external tools and services that are not natively supported by AzureML, GitHub Actions can 

help bridge the gap by running custom scripts and actions to interact with these services.

You can integrate GitHub Actions with AML pipelines to create an end-to-end machine learning 

workflow. This example will show you how to set up a GitHub Actions workflow that trains a 

model using Azure Machine Learning and then deploys it to an inferencing endpoint.

Create a file named .github/workflows/azureml-pipeline.yml in your GitHub repository with 

the following content:

name: AzureML Pipeline

on:

  push:

    branches:

      - main

jobs:

  build:

    runs-on: ubuntu-latest

    steps:

    - name: Checkout repository

      uses: actions/checkout@v2

    - name: Set up Python

      uses: actions/setup-python@v2

      with:

        python-version: '3.8'

    - name: Install dependencies

      run: |



Chapter 9 183

        python -m pip install --upgrade pip

        pip install azure-ai-ml azure-identity

    - name: Authenticate with Azure

      uses: azure/login@v2

      with:

        creds: ${{ secrets.AZURE_CREDENTIALS }}

    - name: Run AzureML Pipeline

      run: |

        az ml model create --model ./model.pkl --name model_name

--version model_version

       az ml online-endpoint create --name endpoint_name

       az ml online-deployment create --name deployment_name

--file deployment_config.yaml

The GitHub pipeline has two main components:

•	 GitHub Actions workflow YAML: This workflow triggers a push to the main branch. It 

checks out the repository, sets up Python, installs dependencies, authenticates with Azure 

using a service principal, and runs the AML pipeline job.

•	 AML pipeline YAML: This file defines the AML pipeline with steps for data ingestion, 

preprocessing, model training, evaluation, and deployment (like the one before ml-

pipeline-job, except this does not have a fixed schedule; the pipeline job execution is 

controlled by GitHub Actions).

This GitHub Actions workflow acts as a bridge between your GitHub repository and AML services, 

enabling continuous integration and deployment whenever code changes are pushed to the 

main branch.

Each step specifies the command to run, the environment to use, and the compute target. In Figure 

9.1, the workflow shows how GitHub Actions orchestrates the ML pipeline execution within Azure, 

with each step building upon the previous one’s outputs.



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows184

 

Figure 9.1 – GitHub CI/CD using AML



Chapter 9 185

Now that we’ve explored how GitHub Actions can enhance and extend AML pipelines, let’s take 

a step further and examine how these concepts apply in a complex, real-world scenario, as many 

organizations require solutions that span multiple cloud providers to meet their specific needs 

for scalability, compliance, and redundancy.

In the following section, we’ll dive into a case study that demonstrates the power and flexibility of 

a multi-cloud CI/CD workflow for machine learning. This real-world example will showcase how 

the principles we’ve discussed can be applied to create a sophisticated, end-to-end ML pipeline 

that leverages the strengths of multiple cloud platforms.

Real-world scenario: Multi-cloud CI/CD for ML 
workflows
Let’s consider an example of a real-world application where a CI/CD workflow was implemented 

for a multi-cloud environment using Azure, AWS, and GCP.

A financial services company needed to deploy its machine learning models across multiple cloud 

platforms (Azure, AWS, and GCP) to ensure high availability, redundancy, and compliance with 

various regional regulations. The company aimed to automate the entire ML lifecycle, from data 

ingestion to model deployment, using a CI/CD workflow that integrates with all three cloud 

providers.

The main expectations of this CI/CD workflow implementation were as follows:

•	 Source code management: The source code for the ML models and pipeline scripts was 

stored in a GitHub repository. GitHub Actions was used to trigger the CI/CD pipeline on 

code changes.

•	 Data ingestion and preprocessing: Data was ingested from various sources and 

preprocessed using Azure Data Factory, AWS Glue, and Google Cloud Dataflow. Each 

cloud provider’s data processing service was used to ensure data locality and compliance 

with regional regulations.

•	 Model training: The models were trained using Azure Machine Learning, AWS SageMaker, 

and Google AI Platform. The training jobs were orchestrated using GitHub Actions, 

which triggered the respective cloud provider’s training service based on the region and 

availability.

•	 Model evaluation: The trained models were evaluated using custom scripts that ran on 

Azure Batch, AWS Batch, and Google Cloud Batch. The evaluation results were stored in 

a centralized database accessible from all three cloud platforms.



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows186

•	 Model deployment: The evaluated models were deployed to inferencing endpoints on 

Azure Kubernetes Service (AKS), Amazon Elastic Kubernetes Service (EKS), and Google 

Kubernetes Engine (GKE). GitHub Actions were used to automate the deployment process, 

ensuring that the models were deployed to the appropriate cloud platform based on the 

region and availability.

•	 Custom notifications and alerts: Custom notifications and alerts were set up using Slack 

and email. GitHub Actions was configured to send notifications to a Slack channel and 

email distribution list whenever a pipeline job was triggered, completed, or failed.

Here are the benefits of this workflow:

•	 High availability: By deploying models across multiple cloud platforms, the company 

ensured high availability and redundancy, minimizing the risk of downtime

•	 Compliance: The multi-cloud approach allowed the company to comply with various 

regional regulations by processing and storing data locally

•	 Scalability: The CI/CD workflow enabled the company to scale its ML operations across 

different cloud platforms, leveraging the strengths of each provider

•	 Efficiency: Automation of the entire ML lifecycle reduced manual intervention, improved 

efficiency, and ensured consistent and reliable model updates

This example demonstrates how a financial services company successfully implemented a multi-

cloud CI/CD workflow using Azure, AWS, and GCP, leveraging the strengths of each cloud provider.

Create a file named .github/workflows/multi-cloud-cicd.yml in your GitHub repository with 

the following content:

name: Multi-Cloud CI/CD Pipeline

on:
  push:
    branches:
      - main

jobs:
  data_ingestion_preprocessing:
    runs-on: ubuntu-latest

    steps:
    - name: Checkout repository
      uses: actions/checkout@v2



Chapter 9 187

    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.8'

    - name: Install AWS CLI
      run: |
        sudo apt-get update
        sudo apt-get install awscli -y

    - name: Authenticate with AWS
      run: |
        aws configure set aws_access_key_id ${{ secrets.AWS_ACCESS_KEY_
ID }}
        aws configure set aws_secret_access_key ${{ secrets.AWS_SECRET_
ACCESS_KEY }}
        aws configure set default.region ${{ secrets.AWS_REGION }}

    - name: Run Data Ingestion and Preprocessing
      run: |
        aws s3 cp s3://your-bucket/data.csv ./data.csv
        python data_preprocessing.py --input ./data.csv
--output ./preprocessed_data.csv

    - name: Upload Preprocessed Data to S3
      run: |
        aws s3 cp ./preprocessed_data.csv s3://your-bucket/preprocessed_
data.csv

  model_training:
    runs-on: ubuntu-latest
    needs: data_ingestion_preprocessing

    steps:
    - name: Checkout repository
      uses: actions/checkout@v2

    - name: Set up Python
      uses: actions/setup-python@v2



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows188

      with:
        python-version: '3.8'

    - name: Install GCP CLI
      run: |
        sudo apt-get update
        sudo apt-get install google-cloud-sdk -y

    - name: Authenticate with GCP
      run: |
        echo ${{ secrets.GCP_SERVICE_ACCOUNT_
KEY }} | gcloud auth activate-service-account --key-file=-
        gcloud config set project ${{ secrets.GCP_PROJECT_ID }}

    - name: Download Preprocessed Data from S3
      run: |
        aws s3 cp s3://your-bucket/preprocessed_data.csv ./preprocessed_
data.csv
    - name: Run Model Training
      run: |
        python train.py --input ./preprocessed_data.csv
--output ./model.pkl
    - name: Upload Model to GCS
      run: |
        gsutil cp ./model.pkl gs://your-bucket/model.pkl
  model_deployment:
    runs-on: ubuntu-latest
    needs: model_training
    steps:
    - name: Checkout repository
      uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.8'
     - name: Install Azure CLI
       uses: Azure/setup-cli@v2
- name: Install Azure ML CLI
run: |
az extension add –n ml



Chapter 9 189

    - name: Authenticate with Azure
      uses: azure/login@v2
      with:
        creds: ${{ secrets.AZURE_CREDENTIALS }}

    - name: Download Model from GCS
      run: |
        gsutil cp gs://your-bucket/model.pkl ./model.pkl

    - name: Deploy Model to Azure ML
      run: |
        az ml model create --model ./model.pkl --name model_name
--version model_version
       az ml online-endpoint create --name endpoint_name
       az ml online-deployment create --name deployment_name
--file deployment_config.yaml

This comprehensive workflow orchestrates ML operations across three cloud providers in 

sequence. The needs keyword creates dependencies between jobs, ensuring data flows properly 

from AWS (preprocessing) to GCP (training) to Azure (deployment). Each job authenticates with 

its respective cloud provider using GitHub secrets and transfers data between platforms using 

cloud-native storage services (S3, GCS). This demonstrates how GitHub Actions can serve as a 

universal orchestrator for multi-cloud ML workflows.

If we closely look into this pipeline, it shows the following steps/stages:

1.	 Data ingestion and preprocessing on AWS: This job checks out the repository, sets 

up Python, installs the AWS CLI, authenticates with AWS, runs data ingestion and 

preprocessing, and uploads the preprocessed data to an S3 bucket.

2.	 Model training on GCP: This job depends on the data ingestion and preprocessing job. It 

checks out the repository, sets up Python, installs the GCP CLI, authenticates with GCP, 

downloads the preprocessed data from S3, runs model training, and uploads the trained 

model to a GCS bucket.

3.	 Model deployment on AML: This job depends on the model training job. It checks out the 

repository, sets up Python, installs the Azure CLI, authenticates with Azure, downloads 

the trained model from GCS, and deploys the model to an AML endpoint.

The following diagram illustrates the data and model flow across three cloud providers, with 

GitHub Actions serving as the central orchestrator, managing authentication, data transfer, and 

job dependencies.



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows190

Figure 9.2 – GitHub CI/CD multi-cloud architecture



Chapter 9 191

However, for GitHub to work in these types of scenarios, the authentication can be complex. This 

is an easy setup, but might need to change based on the enterprise security guidelines.

To authenticate with AWS, GCP, and Azure, you’ll need to set up secrets in your GitHub repository:

1.	 Go to your repository on GitHub.

2.	 Click on Settings | Secrets | New repository secret.

3.	 Add the following secrets:

a.	 AWS_ACCESS_KEY_ID: Your AWS access key ID.

b.	 AWS_SECRET_ACCESS_KEY: Your AWS secret access key.

c.	 AWS_REGION: Your AWS region.

d.	 GCP_SERVICE_ACCOUNT_KEY: Your GCP service account key in JSON format.

e.	 GCP_PROJECT_ID: Your GCP project ID.

f.	 AZURE_CREDENTIALS: JSON output from the az ad sp create-for-rbac 

command.

These secrets enable secure, programmatic access to each cloud provider from GitHub Actions. 

The service account credentials are stored encrypted in GitHub and injected as environment 

variables during workflow execution. This approach follows security best practices by avoiding 

hardcoded credentials in your pipeline configuration files. This setup will allow you to automate 

the entire ML lifecycle, from data ingestion and preprocessing on AWS to model training on GCP 

and deployment on AML, using GitHub Actions.

Caveat

Implementing multi-cloud ML pipelines presents several challenges that require 

careful consideration. Key issues include maintaining data consistency across 

platforms, managing costs effectively, ensuring compliance with varied standards, 

optimizing performance across different environments, maintaining a consistent 

security posture, and developing cross-platform expertise within teams. To address 

these challenges, organizations should implement robust data synchronization tools, 

utilize cloud cost monitoring solutions, adopt a unified data governance framework, 

employ cloud-agnostic orchestration tools such as Kubernetes, implement consistent 

security policies, and invest in cross-cloud training for their teams. By proactively 

addressing these considerations, organizations can maximize the benefits of multi-

cloud ML pipelines while minimizing potential pitfalls.



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows192

While this real-world workflow demonstrates the power of multi-cloud CI/CD pipelines in 

orchestrating end-to-end ML operations, it also highlights the practical complexities that teams 

encounter when managing such environments. To help you navigate these challenges effectively, 

let’s explore the key issues to anticipate in multi-cloud ML pipelines and the best practices you 

can adopt to address them.

Challenges and best practices
Implementing multi-cloud ML pipelines brings significant benefits but also presents unique 

challenges that require careful consideration and planning.

Common challenges in multi-cloud ML pipelines
When implementing multi-cloud MLOps pipelines, there are several challenges you need to be 

aware of to ensure your workflows remain efficient, secure, and cost-effective:

•	 Data consistency and synchronization: Maintaining data consistency across different 

cloud platforms can be complex. Data formats, storage mechanisms, and access patterns 

vary between providers, making it challenging to ensure a seamless data flow.

•	 Security and authentication: Managing authentication across multiple cloud providers 

requires careful coordination of service accounts, secrets, and access policies. Each 

platform has different security models and best practices.

•	 Cost management: Multi-cloud deployments can lead to unexpected costs if not monitored 

properly. Each cloud provider has different pricing models, data transfer fees, and cost 

optimization strategies.

•	 Vendor-specific features: While we aim for cloud-agnostic solutions, each provider has 

unique strengths and APIs that may create dependencies or require platform-specific 

implementations.

•	 Network latency and data transfer: Moving data between cloud providers introduces 

latency and potential bandwidth costs that can impact pipeline performance.

While these challenges can add complexity to your multi-cloud MLOps workflows, adopting 

targeted best practices can help you manage them effectively and build resilient, scalable pipelines.

Best practices
To address the aforementioned challenges effectively, consider adopting the following best 

practices when building and managing multi-cloud MLOps pipelines:



Chapter 9 193

•	 Centralized secret management: Use GitHub secrets or dedicated secret management 

services such as HashiCorp Vault to maintain consistent authentication across all cloud 

providers. Rotate credentials regularly and follow the principle of least privilege.

•	 Monitoring and logging: Implement unified monitoring across all cloud platforms. Tools 

such as Datadog, New Relic, or cloud-native solutions can provide centralized visibility 

into pipeline performance and health.

•	 Cost optimization strategies: To optimize costs in your multi-cloud MLOps pipelines, 

consider the following strategies:

•	 Implement cloud cost monitoring tools and set up budget alerts

•	 Use resource tagging strategies for better cost tracking

•	 Consider data locality to minimize cross-cloud transfer costs

•	 Leverage spot instances or preemptible VMs where appropriate

•	 Error handling and rollback: Design your pipelines with robust error handling and 

rollback mechanisms. Each stage should be able to recover gracefully from failures, with 

clear retry policies and fallback strategies.

•	 Testing strategy: Test your pipelines in staging environments that mirror your production 

multi-cloud setup. Implement comprehensive integration tests that validate data flow 

between cloud providers.

•	 Documentation and governance: Maintain clear documentation of data flows, 

dependencies, and authentication requirements across all cloud platforms. Establish 

governance policies for multi-cloud resource management.

By following these best practices, you can navigate the complexities of multi-cloud MLOps 

pipelines confidently, ensuring your workflows remain secure, cost-efficient, and resilient across 

diverse cloud environments.

Summary
In this chapter, we explored the power and versatility of machine learning pipelines across 

multiple cloud platforms. Key takeaways include the following:

•	 AML pipelines: We learned how to automate and streamline ML workflows within the 

Azure ecosystem

•	 GitHub Actions: We expanded beyond Azure, using GitHub Actions to create more complex 

CI/CD workflows



Automating the ML Lifecycle with ML Pipelines and GitHub Workflows194

•	 Multi-cloud strategy: We implemented a sophisticated pipeline leveraging AWS, GCP, 

and Azure, demonstrating how to do the following:

•	 Preprocess data on AWS

•	 Train models on GCP

•	 Deploy models on AML

•	 Best practices: We covered authentication, error handling, and modular design for robust, 

scalable pipelines

By mastering these concepts, you’re now equipped to design and implement advanced ML 

pipelines that operate seamlessly across multiple cloud environments. This multi-cloud approach 

offers enhanced availability, scalability, and compliance – crucial skills for tackling complex, real-

world ML challenges in modern organizations.

As MLOps continues to evolve, the ability to create flexible, multi-cloud pipelines will become 

increasingly valuable. Keep building on these foundations to stay at the forefront of ML innovation.

With this, we’ve completed our exploration of MLOps core concepts. In the next chapter, we’ll 

examine three real-world case studies that demonstrate how these MLOps principles can be 

applied to solve practical business challenges.



10
Using Models in Real-world 
Applications

MLOps extends the core principles of DevOps to machine learning projects, addressing the unique 

challenges posed by data dependencies, model versioning, and the need for continuous monitoring 

and retraining. By adopting MLOps practices, organizations can streamline their machine learning 

workflows, improve collaboration between data scientists and operations teams, and ensure 

reliable and efficient deployment of models in production environments. 

In this chapter, we will explore three distinct case studies that illustrate how MLOps strategies can 

solve various real-world problems. To showcase the strengths of different cloud providers, each 

case study will focus on a unique cloud platform. This offers valuable insights into the offerings 

of the major cloud providers, highlighting their capabilities in supporting MLOps pipelines.

In this chapter, we will be covering the following main topics:

•	 Recapping fundamental concepts

•	 Case study 1: Demand forecasting on Azure

•	 Case study 2: Handwriting assistance for children on Google Cloud Platform

•	 Case study 3: Real-time precision delivery on Amazon Web Services

Recapping fundamental concepts
Before diving into the case studies, we’ll revisit the fundamental MLOps and DevOps concepts that 

underlie most machine learning projects. This will establish a common framework to reference as 

we analyze how each cloud platform handles the unique challenges posed by specific use cases. 



Using Models in Real-world Applications196

By doing so, you’ll be better equipped to understand the practical implementations of MLOps 

in different environments.

Figure 10.1 illustrates a cloud-agnostic MLOps/DevOps process, integrating traditional DevOps 

practices with machine learning-specific operations:

Figure 10.1 – Comprehensive MLOps process

This pipeline represents the full lifecycle of a machine learning project, from data ingestion to 

model deployment and monitoring. By implementing such a pipeline, organizations can enhance 

collaboration across teams and ensure the continuous delivery of reliable machine learning models.

In the following sections, we will examine three case studies, each showcasing the application 

of MLOps on different cloud platforms:

•	 Demand forecasting on Azure: We’ll examine how a retail company leverages Azure’s 

machine learning services to predict product demand, showcasing the integration of time 

series forecasting with cloud-native MLOps tools

•	 Handwriting assistance for children on Google Cloud Platform (GCP): This case study 

will explore how an educational technology company implements an MLOps pipeline 

on GCP to continuously improve a handwriting recognition and assistance model for 

young learners 



Chapter 10 197

•	 Real-time precision delivery on Amazon Web Services (AWS): We’ll investigate how a 

logistics company utilizes AWS services to deploy and manage machine learning models 

that optimize delivery routes and timing in real time

To systematically examine how different cloud platforms implement MLOps capabilities, each case 

study follows a consistent structure aligned with the MLOps lifecycle we introduced previously. 

We’ll walk through the data pipeline, model development, deployment, monitoring, and feedback 

phases, examining how Azure’s tools and services address each aspect. This structured approach 

will help us compare cloud providers’ strengths and unique features while maintaining a clear 

focus on practical implementation challenges and solutions.

Case study 1: Demand forecasting on Azure
In this case study, we will explore how a global retail company leverages Azure’s machine learning 

services to build and operationalize a demand forecasting system at scale. You will learn how time-

series forecasting can be integrated with cloud-native MLOps tools to automate data pipelines, 

streamline model development, implement CI/CD for reliable deployment, and monitor model 

performance in production. This case study will demonstrate how adopting an end-to-end MLOps 

framework can transform manual forecasting processes into an automated, scalable, and accurate 

system that improves inventory management and enhances operational efficiency across a large 

retail organization.

Business context and requirements
MegaRetail, a global retail chain with over 1,000 stores, faced a significant challenge in accurately 

predicting product demand across its diverse product range. Misaligned forecasts had serious 

implications, such as the following:

•	 Overstocking led to increased storage costs and potential waste for perishable goods.

•	 Understocking resulted in lost sales and dissatisfied customers.

The company relied on manual forecasting methods, which were time-consuming and prone 

to errors, especially during market fluctuations or new product launches. To address these 

inefficiencies, MegaRetail needed an automated solution that could do the following: 

•	 Scale across its extensive operations

•	 Adjust quickly to changing market dynamics

•	 Improve overall supply chain management



Using Models in Real-world Applications198

By adopting an MLOps framework on Azure, MegaRetail successfully transitioned from manual 

forecasting to an automated, scalable, and accurate system. This MLOps-driven transformation 

not only optimized their inventory management but also enhanced operational efficiency. Let’s 

examine how MegaRetail implemented each component of its MLOps pipeline using Azure’s 

cloud services.

Implementation architecture
To implement its MLOps solution, MegaRetail followed a systematic approach that aligned with 

the core MLOps lifecycle components. Each component was carefully designed to leverage Azure’s 

native capabilities while meeting the specific demands of large-scale retail forecasting. 

Data pipeline 
The demand forecasting process begins with data, and MegaRetail needed a reliable, scalable 

pipeline for data ingestion, processing, and feature engineering: 

•	 Data ingestion: MegaRetail utilized Azure Data Factory to automate data ingestion from 

various sources, such as point-of-sale (POS) systems, inventory databases, and external 

market data. Real-time data was streamed using Azure Event Hubs, ensuring timely 

updates for model training. 

•	 Data storage and versioning: All datasets were versioned using Azure Data Lake Storage 

Gen2, which served as a central data lake offering unified storage for both raw and 

processed data. This ensured that model training could be reproduced with consistent 

data snapshots. 

•	 Data validation: Azure Functions was used to perform real-time data quality checks, with 

alerts for anomalies. 

•	 Feature engineering: MegaRetail deployed distributed data processing using Azure 

Databricks for large-scale feature engineering. 

With this robust and scalable data pipeline in place, MegaRetail could now focus on building, 

tracking, and optimizing its forecasting models.

Model development pipeline 
Accurate forecasting requires continuous experimentation and model refinement, and MegaRetail 

built a streamlined model development pipeline to support this:

•	 Experiment tracking: Using AML, data scientists were able to track experiments, compare 

model performance, and tune hyperparameters efficiently. AML datasets provided efficient 

management and versioning of training data. 



Chapter 10 199

•	 Model development: Automated model training pipelines were established with the 

AML SDK, reducing manual involvement and accelerating model iteration. The solution 

leveraged AML compute clusters to scale training workloads based on demand. 

•	 Model evaluation: Automated evaluation scripts assessed each model’s accuracy against 

predefined business metrics, ensuring consistent performance across different store 

locations and product categories.

With models being developed and evaluated seamlessly, the next step was to automate the 

deployment of these models across MegaRetail’s vast network of stores.

CI/CD pipeline 
To integrate machine learning models into their broader operations, MegaRetail implemented a 

CI/CD pipeline that facilitated rapid and reliable deployment. The entire pipeline was orchestrated 

through Azure DevOps, ensuring tight integration between model deployment and infrastructure 

management:

•	 Continuous integration: Application code and machine learning models were tested 

automatically using GitHub Actions, ensuring smooth integration between development 

and deployment environments. 

•	 Continuous delivery: Azure Pipelines automated the deployment of models to both 

staging and production environments. Docker images for model-serving applications 

were managed through Azure Container Registry, enabling consistent deployments across 

environments. 

•	 Model versioning: All models were versioned and tracked using an AML model registry, 

maintaining a clear history of model lineage and enabling quick rollbacks if needed.

With models consistently integrated and deployed, MegaRetail could now focus on how best to 

serve these models in production environments. 

Deployment and serving 
Scalable and efficient model deployment is critical for MegaRetail’s forecasting system, ensuring 

that predictions can be served in real time across thousands of stores. The solution leveraged a 

combination of Azure services to balance performance, cost, and reliability:



Using Models in Real-world Applications200

•	 Model deployment: MegaRetail automated the deployment of models using Azure 

Kubernetes Service (AKS) for scalable inference. Models were served through AML 

endpoints, offering RESTful APIs for real-time predictions. For locations with lower 

prediction volumes, Azure Container Instances provided a cost-effective serving option. 

•	 A/B testing: Azure API Management facilitated A/B testing of different models, allowing 

for controlled experimentation in production. This enabled MegaRetail to validate model 

improvements before full rollout.

•	 Canary releases: Canary deployments were implemented to gradually roll out new model 

versions, reducing the risk of performance degradation. This approach ensured that any 

issues could be detected and addressed before affecting the entire store network.

With models now live in production, MegaRetail needed continuous monitoring to ensure 

consistent model performance.

Monitoring and logging 
Ongoing monitoring and logging were crucial for maintaining the accuracy of MegaRetail’s demand 

forecasts. The company implemented a comprehensive monitoring strategy that combined real-

time alerting with long-term performance tracking:

•	 Performance monitoring: Custom dashboards in Azure Monitor tracked system health and 

model performance metrics. Azure Application Insights complemented this by providing 

end-to-end request tracing, offering detailed insights into model serving performance 

and user interaction patterns. 

•	 Data drift detection: Automated data drift detection, powered by AML, triggered alerts 

when data patterns began to deviate significantly from training data distributions. Azure 

Event Grid enabled event-driven monitoring and alerting, ensuring quick responses to 

potential issues. 

•	 Logging: Centralized logging with Azure Log Analytics enabled fast troubleshooting 

and auditing capabilities. This unified logging approach helped MegaRetail maintain 

compliance requirements while facilitating quick problem resolution across its store 

network.

To maintain long-term accuracy, MegaRetail needed a robust feedback loop to retrain models 

based on new data and shifting trends. 



Chapter 10 201

Feedback loop 
An efficient feedback loop ensured that MegaRetail’s models stayed up to date with the latest 

market trends and customer behavior. The solution balanced automated processes with human 

oversight to maintain model reliability:

•	 Automated retraining: Azure Functions triggered retraining pipelines whenever 

performance degraded or data drift was detected. AML pipelines orchestrated the end-

to-end retraining process, ensuring automation and efficiency in updates. 

•	 Human-in-the-loop: Approval workflows in Azure Logic Apps were implemented for 

critical model updates, allowing human oversight when necessary. This ensured that 

significant model changes were validated before deployment to production.

The implementation of this comprehensive feedback loop, combined with the robust monitoring 

system, enabled MegaRetail to maintain model accuracy while adapting to changing market 

conditions. With the core MLOps pipeline components in place, the next crucial step was ensuring 

the scalability and compliance of the underlying infrastructure.

Platform-specific solution
Managing the MLOps infrastructure effectively required automation, consistency, and security. 

MegaRetail leveraged Azure’s native capabilities to create a secure, compliant, and automated 

infrastructure management system:

•	 Infrastructure automation: Azure Resource Manager (ARM) templates were used to 

automate and standardize the deployment of infrastructure across environments. This 

infrastructure-as-code approach ensured consistency and reduced manual configuration 

errors. 

•	 Environment management: AML environments helped maintain consistent dependencies 

and configurations across development, testing, and production. This standardization 

was crucial for reproducible model development and reliable deployments. 

•	 Security and compliance:

•	 Azure Policy enforced compliance and security standards across the MLOps 

infrastructure.

•	 Azure Key Vault provided centralized management of secrets, credentials, and 

API keys.

•	 Azure role-based access control (Azure RBAC) ensured appropriate access levels 

across teams.



Using Models in Real-world Applications202

By leveraging these Azure-specific capabilities, MegaRetail created a robust, secure, and scalable 

MLOps infrastructure that supported their entire demand forecasting system. This foundation 

proved crucial for maintaining model performance and reliability at scale.

Challenges and solutions
The implementation of MegaRetail’s MLOps pipeline revealed several technical and operational 

challenges that required innovative Azure-based solutions. These challenges tested the system’s 

ability to handle regional variations and maintain performance at scale.

Regional time-series forecasting 
MegaRetail encountered two major challenges in implementing region-specific forecasting at scale. 

These challenges required innovative solutions leveraging Azure’s machine learning capabilities:

•	 Region-specific model optimization: The challenge of handling diverse sales patterns 

across different regions was addressed through Azure Machine Learning’s custom time-

series algorithms and automated hyperparameter tuning. This solution improved forecast 

accuracy by 35% across regions while reducing model training time by 60%, enabling 

precise demand prediction for each market’s unique characteristics.

•	 Parallel training and deployment: To manage multiple region-specific models efficiently, 

MegaRetail implemented parallel training pipelines using AML. This approach enabled 

simultaneous training of models across 20+ regions while maintaining consistent 

performance metrics, resulting in a 75% reduction in overall model deployment time.

Scalability and performance 
As MegaRetail’s operations expanded globally, the system faced significant scaling challenges 

that required robust solutions to maintain performance across its infrastructure:

•	 Data processing and model training: The challenge of processing massive volumes of 

retail data was solved through Azure Databricks’ horizontal scaling capabilities and AML 

compute clusters. This solution successfully processed over 100 TB of historical sales data 

while reducing training costs by 40% through efficient resource utilization.

•	 Dynamic model serving: To handle varying demand across time zones and peak shopping 

periods, MegaRetail leveraged AKS for dynamic scaling. This implementation successfully 

served 50,000 predictions per second during peak hours while maintaining response 

times under 100 ms and achieving 99.9% availability.



Chapter 10 203

While MegaRetail’s demand forecasting demonstrated the power of MLOps in handling structured, 

time-series data, our next case study explores how similar principles can be applied to unstructured 

data in the form of handwriting samples. This shift from numerical prediction to computer vision 

highlights the versatility of MLOps practices across different domains.

Case study 2: Handwriting assistance for children on 
Google Cloud Platform
In this case study, we will explore how an educational technology company leverages Google Cloud 

Platform (GCP) and MLOps practices to build, deploy, and continuously improve a handwriting 

recognition and assistance system for young learners. You will learn how to design an end-to-end 

MLOps pipeline for unstructured data, including scalable data ingestion and preprocessing, model 

development with AutoML and custom TensorFlow models, CI/CD deployment strategies, and 

real-time serving using GCP’s native tools. This case study will also demonstrate how to implement 

effective monitoring, logging, and feedback loops to ensure continuous model adaptation and 

improvement, enabling the delivery of engaging, personalized learning experiences for children 

while maintaining high system reliability and performance.

Business context and requirements
An educational technology company, EduLearn, sought to build a handwriting assistance 

application for children. The goal was to help young learners improve their handwriting skills 

by analyzing writing patterns and offering personalized feedback in real time. The challenge was 

to create a system that could handle the variability in children’s handwriting, recognize different 

writing styles, and continuously improve the underlying model based on user feedback.

EduLearn faced several critical business challenges:

•	 Managing the high variability in children’s handwriting styles

•	 Supporting continuous improvement as learners progress

•	 Delivering real-time, engaging feedback to maintain student interest 

These requirements made traditional manual approaches inefficient and unsuitable. To solve 

these challenges, EduLearn turned to Google Cloud Platform (GCP) and MLOps practices to 

build a scalable, adaptive, and automated system. 

To implement their MLOps solution, EduLearn followed a systematic approach that aligned 

with the core MLOps lifecycle components. Each component was carefully designed to leverage 

GCP’s native capabilities while meeting the specific demands of real-time handwriting analysis.



Using Models in Real-world Applications204

Implementation architecture
To deliver effective handwriting assistance, EduLearn designed a comprehensive MLOps 

architecture that leveraged GCP’s native capabilities for processing and analyzing handwriting 

samples. Each component was carefully structured to handle the unique challenges of computer 

vision processing and real-time feedback delivery.

Data pipeline 
The handwriting assistance system begins with data processing, and EduLearn needed a reliable, 

scalable pipeline for handling unstructured image data. Their data pipeline was designed to 

process thousands of handwriting samples while maintaining data quality and versioning: 

•	 Data ingestion: EduLearn utilized Google Cloud Storage for scalable storage of handwriting 

images, while the Cloud Vision API handled initial processing and feature extraction. 

Real-time handwriting samples were streamed directly from the application, ensuring 

continuous model improvement. 

•	 Data storage and versioning: Cloud Storage and BigQuery managed data versioning and 

metadata storage. While Cloud Storage maintained raw handwriting images, BigQuery 

handled metadata and annotations, enabling the efficient tracking of data lineage and 

sample evolution. 

•	 Data validation: Custom validation pipelines through Cloud Functions performed quality 

checks on incoming data, assessing image quality, formatting, and metadata consistency. 

The process monitored sample diversity across writing styles to maintain a balanced, 

generalizable dataset. 

•	 Feature engineering: Cloud Dataflow orchestrated distributed processing of handwriting 

images, handling preprocessing, normalization, and feature extraction through the 

Cloud Vision API. The system generated training-specific features that captured essential 

handwriting characteristics, creating optimized formats for model training. 

This robust data pipeline ensured that EduLearn could efficiently process and manage the large 

volume of handwriting samples needed for model training and improvement.

Model development pipeline 
Accurate handwriting recognition requires continuous experimentation and adaptation to 

different writing styles. EduLearn built a streamlined model development pipeline to support 

rapid iteration and optimization of their models: 



Chapter 10 205

•	 Experiment tracking: Vertex AI Experiments enabled data scientists to track model 

parameters, performance indicators, and training datasets across different user segments. 

The system maintained complete reproducibility by logging all configurations and results, 

allowing teams to replicate successful experiments and learn from previous iterations. 

•	 Model development: EduLearn implemented a two-phase approach, starting with 

AutoML Vision for rapid prototyping and baseline performance, followed by fine-tuning 

using custom TensorFlow models on Vertex AI. TPU Pods and Vertex AI Workbench 

accelerated the development process, enabling efficient experimentation and collaborative 

development. 

•	 Model evaluation: Automated evaluation pipelines assessed model performance across 

handwriting styles, age groups, and skill levels. The system monitored recognition accuracy, 

real-time inference performance, and user engagement metrics to ensure consistent 

quality across all user segments. 

With this comprehensive development pipeline in place, EduLearn could rapidly iterate on its 

models while maintaining rigorous quality standards. The next critical step was establishing a 

reliable deployment pipeline to bring these models into production.

CI/CD pipeline
EduLearn implemented an MLOps CI/CD pipeline to streamline the deployment of updated 

models and application code, ensuring reliable updates while maintaining system stability across 

their global user base: 

•	 Continuous integration: Cloud Build automated the testing infrastructure, validating both 

model code and performance metrics. Through integration with Cloud Source Repositories, 

the pipeline maintained version control of code and model artifacts, ensuring thorough 

validation before deployment. 

•	 Continuous delivery: Cloud Deploy orchestrated the automated deployment of new 

model versions across production environments. The system coordinated updates between 

inference systems and feedback mechanisms, managing region-specific deployments to 

maintain consistent performance for EduLearn’s global user base. 

•	 Model versioning: Vertex AI Model Registry served as the central hub for tracking model 

versions and their metadata. This versioning system enabled quick rollbacks when needed 

and facilitated the easy comparison of models in production, supporting continuous 

improvement while maintaining service quality. 



Using Models in Real-world Applications206

With this robust CI/CD pipeline in place, EduLearn could confidently deploy model updates 

while ensuring consistent performance. The next critical component was establishing effective 

deployment and serving strategies for these models.

Deployment and serving 
Low-latency, scalable model deployment was critical for delivering real-time feedback to children 

using the application. EduLearn needed an infrastructure that could handle varying loads while 

maintaining consistent response times to keep young learners engaged: 

•	 Model deployment: EduLearn leveraged Vertex AI Prediction to deploy its TensorFlow 

models at scale, ensuring reliable and efficient serving of predictions. Through Cloud Run, 

the system exposed a responsive inference API that provided immediate feedback to users 

while seamlessly handling containerized deployment and auto-scaling based on demand. 

•	 Canary deployments: To minimize risks associated with model updates, EduLearn 

implemented canary releases using Cloud Run and Google Kubernetes Engine (GKE). 

This approach enabled gradual rollouts of new model versions, initially directing only a 

small percentage of traffic to updated models. GKE’s orchestration capabilities ensured 

high availability during these transitions, automatically scaling resources based on traffic 

patterns and maintaining performance during peak usage. 

With this robust deployment infrastructure in place, EduLearn successfully balanced the demands 

of real-time performance with the need for reliable, scalable service delivery. The next crucial 

component was implementing comprehensive monitoring and logging to ensure sustained quality 

of service. 

Monitoring and logging 
To ensure the system’s effectiveness, EduLearn implemented real-time monitoring and logging 

for both model performance and user feedback. This comprehensive monitoring approach was 

essential for maintaining high-quality handwriting assistance: 

•	 Performance monitoring: Custom dashboards in Google Cloud Monitoring tracked critical 

metrics, including latency, model accuracy, and user interactions. The system integrated 

with Vertex AI Model Monitoring to detect model drift, particularly important as children’s 

handwriting styles evolve over time. 

•	 Logging: Cloud Logging provided centralized logging management, capturing both model 

predictions and user feedback. This unified logging approach enabled quick debugging, 

performance auditing, and continuous system optimization through detailed insights 

into user interactions and model behavior. 



Chapter 10 207

With robust monitoring and logging in place, EduLearn could proactively address performance 

issues and ensure consistent service quality. The final component was establishing an effective 

feedback loop for continuous model improvement. 

Feedback loop
The model needed to adapt continuously to children’s evolving handwriting styles, and the 

feedback loop was designed to facilitate this ongoing improvement process: 

•	 Automated retraining: EduLearn implemented automated retraining triggers using 

Vertex AI Pipelines, initiating new training cycles when performance metrics indicated 

degradation. The pipeline orchestrated the end-to-end retraining process, incorporating 

new data and updating models based on recent user interactions. 

•	 Human-in-the-loop: For edge cases involving unusual handwriting patterns, the system 

incorporated human oversight through Cloud Functions and Cloud Tasks. This workflow 

automatically flagged outlier predictions for expert review, ensuring quality control while 

maintaining system automation. 

This comprehensive feedback system enabled EduLearn’s handwriting recognition models to 

evolve alongside their users’ progress, maintaining high accuracy across diverse writing styles 

and skill levels.

Challenges and solutions 
EduLearn’s implementation of the handwriting assistance system presented unique technical 

challenges that required sophisticated GCP-based solutions. These challenges tested the system’s 

ability to handle diverse input data and maintain real-time performance.

Variability in handwriting styles 
EduLearn faced significant challenges in handling the diverse and inconsistent nature of children’s 

handwriting, requiring sophisticated solutions to address both individual variation and skill 

progression:

•	 Model generalization and adaptation: The challenge of processing inconsistent 

handwriting styles across different age groups and skill levels was addressed through 

AutoML Vision’s automated model-building capabilities. By implementing continuous 

fine-tuning with Vertex AI, the system achieved a 40% improvement in recognition 

accuracy across diverse writing styles while reducing manual intervention by 85%.



Using Models in Real-world Applications208

•	 Learning progress tracking: To handle the evolution of individual students’ handwriting 

over time, EduLearn developed a progressive learning system that maintained personalized 

models for each student. This approach, combined with automated retraining pipelines, 

enabled the system to adapt to improvements in writing skills while maintaining 95% 

recognition accuracy for individual users.

Real-time inference performance
To deliver immediate, engaging feedback to learners, EduLearn needed to ensure that its 

handwriting assistance system could provide real-time predictions at scale while maintaining 

low latency and high reliability. This is how it handled the problem:

•	 Latency management and user experience: The critical challenge of providing 

instantaneous feedback was solved through Cloud Run’s serverless architecture and 

Vertex AI Prediction’s optimized inference pipeline. This solution consistently delivered 

feedback within 200 ms, maintaining student engagement while processing over 1,000 

handwriting samples per second.

•	 Scalable resource management: To handle varying loads across different time zones and 

usage patterns, EduLearn implemented dynamic scaling using Cloud Run’s auto-scaling 

capabilities. This approach successfully managed peak loads of 50,000 concurrent users 

while maintaining consistent response times and reducing operational costs by 30%.

Having examined MLOps in both retail forecasting and educational technology contexts, we now 

turn to perhaps the most demanding scenario: real-time logistics optimization. This case study 

demonstrates how MLOps principles can be adapted for applications requiring split-second 

decisions and continuous adaptation.

Case study 3: Real-time precision delivery on 
Amazon Web Services
In this case study, we will explore how a logistics company leverages Amazon Web Services (AWS) 

to build, deploy, and manage machine learning models that enable real-time precision delivery. 

You will learn how to design an end-to-end MLOps pipeline on AWS to handle continuous streams 

of geospatial and traffic data, build reinforcement learning models for route optimization, and 

implement scalable CI/CD pipelines for rapid model updates. This case study will also demonstrate 

how to deploy low-latency prediction services for real-time decision-making, monitor model 

and system performance, and implement effective feedback loops for continuous improvement, 

illustrating how MLOps practices can drive operational efficiency in high-demand, time-sensitive 

logistics environments.



Chapter 10 209

Business context and requirements
FastRoutes, a logistics company, aimed to optimize delivery routes and timing in real time to 

achieve precision deliveries. The company faced complex challenges involving dynamic traffic 

patterns, fluctuating customer locations, and strict delivery windows. Manual route planning and 

static optimization methods were no longer sufficient for its growing operations and customer 

expectations. 

The business requirements were multifaceted for FastRoutes, including the following:

•	 Minimize delivery delays by adapting to real-time traffic conditions

•	 Maximize resource utilization through optimal route and load planning

•	 Ensure precise delivery windows to enhance customer satisfaction

This use case presented unique challenges compared to our previous scenarios. Unlike batch-

processed demand forecasting or single-user handwriting assistance, precision delivery requires 

split-second decisions for multiple drivers simultaneously. The system needed to process 

continuous streams of geospatial data, including traffic updates, driver locations, and delivery 

addresses. Additionally, the solution had to balance complex constraints such as vehicle capacity, 

driver schedules, and customer time preferences while continuously optimizing routes. 

To address these challenges, FastRoutes implemented an MLOps solution on AWS, leveraging 

services such as Amazon Kinesis for real-time data processing, Amazon SageMaker for geospatial 

machine learning, and AWS IoT Core for device connectivity. This infrastructure enabled 

FastRoutes to make instant routing decisions while maintaining system reliability and scalability.

Implementation architecture
FastRoutes developed a comprehensive MLOps architecture on AWS to enable real-time route 

optimization and precision delivery. The system was designed to process streaming data from 

multiple sources while maintaining the agility to respond to rapidly changing conditions. 

Each component was carefully structured to handle the unique demands of real-time logistics 

optimization.

Data pipeline 
FastRoutes required a robust pipeline for processing real-time data from multiple sources, 

including traffic updates, GPS data, and customer information. The system needed to handle 

continuous data streams while maintaining data quality and historical records:



Using Models in Real-world Applications210

•	 Data ingestion: Amazon Kinesis managed real-time data ingestion from IoT devices, 

GPS trackers, delivery vehicles, and customer apps. The streaming architecture ensured 

immediate processing of traffic updates and location data to support real-time route 

optimization. 

•	 Data storage and versioning: Amazon S3 and AWS Glue handled data versioning and 

historical storage, maintaining both real-time and historical data for model training and 

analysis. This dual-storage approach enabled both immediate access to current data and 

long-term analysis of delivery patterns. 

•	 Data validation: AWS Lambda implemented real-time validation checks, triggering alerts 

for data inconsistencies such as incorrect GPS coordinates or invalid traffic updates. This 

ensured clean, reliable data for the downstream optimization models. 

•	 Feature engineering: Amazon EMR orchestrated large-scale feature engineering, 

extracting critical information such as delivery time estimates and traffic patterns. The 

system processed streaming data in real time to generate features that captured the 

dynamic nature of delivery operations. 

This robust data pipeline enabled FastRoutes to process and analyze massive amounts of real-time 

data while maintaining historical records for continuous model improvement.

Model development pipeline 
The dynamic nature of delivery optimization required frequent model updates and real-time 

predictions to maintain routing efficiency across changing conditions:

•	 Experiment tracking: Amazon SageMaker Experiments tracked model versions, 

hyperparameters, and optimization techniques, enabling FastRoutes to systematically 

improve their routing algorithms.

•	 Model development: Using Amazon SageMaker, FastRoutes developed reinforcement 

learning models for route optimization, while Amazon Elastic Inference enhanced 

prediction performance and cost efficiency.

Note

Amazon Elastic Inference was deprecated in April 2024. For new projects, 

consider using AWS Inferentia or GPU-based endpoints for efficient inference.



Chapter 10 211

•	 Model evaluation: SageMaker Model Monitor evaluated real-time performance against 

key metrics, including delivery time accuracy and fuel efficiency, ensuring that the system 

maintained optimal routing decisions.

This comprehensive development pipeline enabled FastRoutes to continuously improve its routing 

models while maintaining consistent performance. The next step was establishing a reliable 

deployment pipeline to bring these models into production.

CI/CD pipeline 
With frequent updates to the optimization models and software, FastRoutes implemented a 

seamless CI/CD pipeline to ensure reliable deployments across its delivery network: 

•	 Continuous integration: AWS CodeBuild and CodeCommit automated the testing of 

model updates and application changes, ensuring consistent quality across all components.

•	 Continuous delivery: AWS CodePipeline managed deployments across regions, making 

new optimizations rapidly available to all delivery routes, while SageMaker Model Registry 

enabled version control and quick rollbacks when needed.

Deployment and serving 
To ensure low-latency predictions for real-time route adjustments, FastRoutes implemented a 

scalable serving infrastructure: 

•	 Model deployment: Amazon EKS provided containerized model deployment with fault 

tolerance, while SageMaker endpoints delivered real-time inference for route adjustments 

based on incoming traffic and location data.

•	 Canary deployments: AWS App Mesh enabled gradual rollouts of new model versions, 

while Amazon API Gateway facilitated integration with driver and customer applications, 

ensuring smooth transitions during updates.

With this robust deployment pipeline in place, FastRoutes could confidently update its 

routing models while maintaining consistent service quality. The next critical component was 

implementing comprehensive monitoring to ensure sustained performance.



Using Models in Real-world Applications212

Monitoring and logging 
Ensuring real-time precision delivery required continuous monitoring of both models and system 

infrastructure: 

•	 Performance monitoring: Amazon CloudWatch dashboards tracked key metrics, including 

prediction accuracy, latency, and route update effectiveness, while SageMaker Model 

Monitor detected drift in model performance as traffic patterns evolved.

•	 Logging: Centralized logging through CloudTrail and CloudWatch Logs provided 

comprehensive visibility into system operations, enabling quick identification and 

resolution of any delivery optimization issues.

Feedback loop 
Continuous optimization was essential for maintaining precise delivery operations, requiring 

regular model updates based on real-world performance: 

•	 Automated retraining: SageMaker Pipelines managed automated retraining workflows, 

triggered by significant traffic pattern changes or performance degradation. AWS Lambda 

handled the orchestration of these retraining events based on monitored thresholds. 

•	 Human-in-the-loop: For exceptional cases such as major traffic incidents or unusual 

events, Amazon Mechanical Turk enabled manual intervention in route adjustments, 

ensuring system reliability even in unexpected situations. 

Challenges and solutions
The implementation of FastRoutes’ MLOps pipeline revealed critical operational challenges that 

required innovative AWS-based solutions. Each challenge presented unique technical hurdles 

that tested different aspects of the system’s architecture.



Chapter 10 213

Real-time processing at scale 
FastRoutes faced two critical challenges in processing and responding to massive volumes of 

real-time data from their delivery network:

•	 Data processing and response time: Faced with processing massive streams of real-

time traffic, GPS, and weather data, FastRoutes implemented a comprehensive streaming 

architecture using Kinesis Data Streams and Lambda. This solution, coupled with 

SageMaker endpoints, enabled the processing of thousands of data points per second 

while maintaining low-latency predictions.

•	 System scalability and performance: The challenge of maintaining consistent 

performance across growing delivery networks was addressed through dynamic scaling of 

AWS resources and distributed processing. This approach successfully handled peak loads 

of over 10,000 concurrent route calculations while keeping response times under 100 ms.

Complex route optimization
Beyond real-time data processing, FastRoutes needed to address the intricate challenge of 

optimizing delivery routes while balancing multiple operational constraints to maximize efficiency 

and customer satisfaction. This is how it handled the situation:

•	 Multi-constraint optimization: To handle the complex interplay of driver schedules, 

vehicle capacity, and delivery windows, FastRoutes developed sophisticated reinforcement 

learning models on SageMaker. This solution dynamically balanced multiple constraints 

while adapting to real-time conditions, resulting in a 15% reduction in delivery times.

•	 Resource utilization and efficiency: The challenge of optimizing both fuel consumption 

and delivery efficiency was solved through an EKS-deployed model that continuously 

adjusted routes based on real-time conditions. This approach improved vehicle utilization 

by 23% while maintaining high customer satisfaction scores.

These three case studies demonstrate that while each cloud platform offers unique services and 

capabilities, the fundamental MLOps architecture remains consistent across implementations. 



Using Models in Real-world Applications214

Figure 10.2 illustrates how the core MLOps components—data pipelines, model development, 

CI/CD, deployment, monitoring, and feedback loops—form a unified framework that can be 

adapted to any cloud environment.

Figure 10.2 – Unified MLOps architecture: multi-cloud implementation

As Figure 10.2 demonstrates, successful MLOps implementation follows common patterns 

regardless of the underlying cloud infrastructure, with each platform providing specialized tools 

to address similar operational challenges. This architectural consistency enables organizations to 

apply MLOps principles effectively across different cloud environments while leveraging platform-

specific strengths.

Summary
In this chapter, we explored three real-world applications of MLOps, each implemented on a 

different cloud platform—Azure, GCP, and AWS. Through these case studies, we demonstrated 

how MLOps principles can streamline machine learning workflows across diverse industries, 

from retail and education to logistics. 

Each cloud provider offers unique tools and services tailored to solve specific challenges. Azure was 

leveraged for its robust time-series forecasting capabilities and scalable data pipelines, enabling 

precise demand forecasting. 



Chapter 10 215

GCP focused on continuous model improvement and automation in an educational context, 

showcasing GCP’s strengths in handling unstructured data and iterative learning. AWS emphasized 

real-time decision-making and dynamic optimization for delivery services, highlighting AWS’s 

real-time data processing and scalability. 

Despite the differences in cloud platforms and business needs, the common MLOps tasks—such 

as data ingestion, model development, CI/CD pipelines, deployment, monitoring, and retraining—

were critical to all scenarios. By adopting MLOps strategies, organizations can not only improve 

operational efficiency but also ensure the scalability and reliability of machine learning models 

in production. 

This chapter provided a practical understanding of how to implement MLOps in various cloud 

environments, offering insights into the competitive advantages of each platform. With these 

concepts in hand, you’re now better equipped to tackle machine learning operations in your own 

projects, regardless of the cloud provider you choose.

In the next chapter (the final one), we will briefly explore how these MLOps principles extend 

to large language models (LLMs), examining the unique challenges and specialized practices 

required for operationalizing LLM applications at scale.





11
Exploring Next-Gen MLOps

Congratulations on reaching the final chapter of our MLOps journey! Having explored traditional 

MLOps practices throughout the previous 10 chapters, this final chapter introduces Large 

Language Model Operations (LLMOps)—a specialized evolution that addresses the unique 

operational challenges of Large Language Models (LLMs). Rather than diving deep into all aspects, 

this chapter aims to familiarize you with the emerging landscape of LLMOps and prepare you for 

a more in-depth study. LLMOps is rapidly evolving, with unique challenges, tools, and processes, 

particularly in deploying and managing LLMs such as GPT-4.

As we move through this chapter, you’ll gain a foundational understanding of the unique aspects 

of LLMOps, from its frameworks and practical applications to the challenges it presents. Also, 

for illustration purposes, there will be screenshots from the Azure Foundry portal (https://

ai.azure.com). By the end of this chapter, you’ll not only appreciate how LLMs differ from 

traditional Machine Learning (ML) models but also understand how to operationalize them using 

strategies such as Retrieval-Augmented Generation (RAG) and prompt engineering. You’ll walk 

away equipped with the knowledge to navigate the complexities of deploying, monitoring, and 

optimizing LLMs—skills that are essential as you step into the evolving landscape of AI operations.

The chapter covers the following key areas:

•	 Introducing LLMs: New concepts and key differences from MLOps

•	 Challenges and risks in LLMOps

•	 Benefits and trends of LLMOps

•	 Practical example: Implementing LLMOps with Azure AI

https://ai.azure.com
https://ai.azure.com


Exploring Next-Gen MLOps218

Introducing LLMs: New concepts and key differences 
from MLOps
While sharing foundational principles with MLOps, LLMOps requires distinct methodologies, 

evaluation frameworks, and safety considerations that traditional ML operations don’t adequately 

address, as shown in the following figure:

 

Figure 11.1 – Key differences between MLOps and LLMOps

These fundamental differences require specialized approaches, tools, and methodologies that 

traditional MLOps frameworks don’t adequately address.

Foundational models, such as GPT-4, are pre-trained on vast amounts of data across the internet. 

They can take inputs in various forms, such as language, audio, and vision, and generate an output 

in all three formats. However, these models come with inherent limitations:

•	 Lack of domain knowledge in LLMs is a significant challenge when applying these 

models to specific business contexts. While LLMs possess vast general knowledge, they 

often lack specialized, up-to-date, or proprietary information crucial for many business 

applications. This limitation can lead to inaccurate or irrelevant responses when queried 

about company-specific processes, products, or recent developments. 

•	 Hallucinations and factual inaccuracies: LLMs can generate content that appears 

plausible but contains factual errors or completely fabricated information, especially 

when asked about topics beyond their training data.



Chapter 11 219

•	 Temporal limitations: These models have knowledge cutoffs and cannot access real-

time information without external integrations, making them potentially outdated for 

time-sensitive applications.

•	 Reasoning limitations: While LLMs excel at pattern recognition, they may struggle 

with complex logical reasoning, mathematical problem-solving, or maintaining logical 

consistency across lengthy outputs.

•	 Bias and fairness issues: LLMs can perpetuate or amplify biases present in their training 

data, potentially leading to unfair or discriminatory outputs in business contexts.

•	 Context window constraints: LLMs have finite context windows, limiting their ability to 

process very long documents or maintain context across extended conversations.

Developing an effective LLM solution requires a nuanced approach that goes beyond simply 

selecting a base model. Successful implementation involves carefully orchestrating several key 

components that transform a generic LLM into a targeted, efficient solution.

To develop a business solution with an LLM, let’s explore the process and then delve into Azure-

specific tools that help with this. Let’s first look at the components of an LLM.

Components of LLM solution development
Implementing an effective LLM solution requires more than just selecting a model. It demands 

a carefully orchestrated system of interconnected components working together to transform a 

general-purpose model into a business-specific tool. Each of these components plays a critical 

role in the overall solution architecture:

•	 Base model: This involves selecting an appropriate model based on the task requirements, 

performance, and cost considerations. 

•	 Custom components: Integrating necessary packages (e.g., Python packages) or other 

tools (such as LangChain or Semantic Kernel) to support the application’s functionality. 

•	 Data preparation: This can involve either fine-tuning or RAG approaches:

•	 Fine-tuning: This approach involves further training the model on a smaller 

dataset of domain-specific information, effectively teaching the model new 

knowledge and tailoring its responses to the specific use case. The process is to 

iterate fine-tuning job parameters and training data.



Exploring Next-Gen MLOps220

•	 RAG: This involves dynamically retrieving relevant information from a separate 

knowledge base and incorporating it into the model’s generation process. RAG 

allows the LLM to access current and domain-specific information without 

retraining. Implementing RAG requires systematic experimentation—testing 

different indexing strategies, optimizing document chunk sizes, and evaluating 

various retrieval methods to find the configuration that delivers the most relevant 

and accurate information to the model.

•	 Prompt engineering: Crafting and refining prompts to guide the LLM’s output effectively. 

•	 Orchestration: Implementing tools and workflows to manage the application’s 

components and processes.

These components must work in harmony to create an effective LLM solution. The careful selection 

and integration of each element determines not only the technical performance of the system 

but also its business value and user experience. Organizations that excel at integrating these 

components can transform general-purpose LLMs into powerful, domain-specific tools that 

address unique business challenges.

As we move from understanding the components to implementing them, it’s important to recognize 

that LLM development follows a distinct process that differs significantly from traditional ML 

approaches.

Development process
Unlike traditional ML models, LLM development is inherently experimental and non-linear. 

Developers must continuously adjust multiple interconnected parameters to achieve the desired 

performance, balancing technical capabilities with business requirements and user experience. 

To achieve satisfactory results before deployment, developers typically iterate on the following 

parameters:

•	 LLM-specific parameters: These foundational settings directly control the model’s 

generation behavior and significantly impact output quality. Fine-tuning these parameters 

requires understanding the trade-offs between creativity and determinism:

•	 Temperature: Controls output randomness, with higher values (0.7-1.0) producing 

more creative but potentially inconsistent outputs, while lower values (0.1-0.3) 

generate more deterministic, focused responses

•	 Top-P (nucleus sampling): Defines the probability threshold for token selection, 

allowing developers to limit the model to higher-probability tokens without 

completely eliminating creative options



Chapter 11 221

•	 Max tokens: Limits the length of generated text, requiring careful balancing 

between comprehensive responses and computational efficiency

•	 Prompt design: The engineering of effective prompts is both an art and a science, requiring 

systematic experimentation to achieve reliable results:

•	 Prompt structure and language significantly impact model outputs, with clear 

instructions and consistent formatting yielding more predictable results.

•	 Zero-shot versus few-shot prompting techniques offer different approaches based 

on task complexity. Few-shot examples provide guided learning for complex tasks, 

while zero-shot keeps prompts efficient for simpler queries.

•	 Strategic inclusion of relevant context or examples helps ground the model’s 

responses in domain-specific knowledge and desired output formats.

•	 Data processing: The preparation and organization of data fundamentally shapes how 

LLMs access and utilize information:

•	 For RAG: Effective chunk size determination balances context preservation with 

retrieval granularity, while indexing strategy and embedding method selection 

directly impact relevance and retrieval accuracy

•	 For fine-tuning: Careful dataset selection, preprocessing for consistency, and 

augmentation techniques help prevent overfitting while ensuring the model learns 

domain-specific patterns

•	 Workflow optimization: The architecture connecting various LLM components 

determines system efficiency, scalability, and maintenance complexity:

•	 Integration of specialized AI agents for discrete tasks enables modular design and 

easier debugging while improving overall system performance

•	 Thoughtful orchestration of components in the application pipeline reduces 

latency, minimizes computational overhead, and ensures smooth information 

flow between modules

•	 Performance metrics: Comprehensive evaluation frameworks must capture both technical 

performance and business value:

•	 Accuracy, relevance, and consistency metrics should align with business objectives 

and use case requirements rather than generic benchmarks



Exploring Next-Gen MLOps222

•	 Response time and computational efficiency considerations vary by application 

context—user-facing applications demand low latency, while batch processing 

may prioritize throughput

•	 User experience: The ultimate measure of an LLM solution’s success lies in its ability to 

meet user needs effectively:

•	 The clarity and usefulness of generated responses must be evaluated through 

systematic user testing with representative stakeholders

•	 Alignment with user expectations and domain-specific requirements ensures the 

solution delivers meaningful value in its intended context

The development process is inherently iterative, involving continuous testing, evaluation, and 

refinement through version control prompts, automated testing, and rapid deployment techniques. 

This iterative approach fits within a broader LLMOps lifecycle that emphasizes cyclical workflows 

with multiple feedback loops, unlike traditional MLOps’ linear training-deployment patterns.

Figure 11.2 – The LLMOps lifecycle

This lifecycle depicted in Figure 11.2 illustrates how LLMOps differs fundamentally from traditional 

MLOps workflows, with continuous feedback loops between prompt engineering, evaluation, 

and deployment phases. The iterative nature ensures that LLM solutions can adapt and improve 

based on real-world performance and user feedback.



Chapter 11 223

Readiness for deployment
Determining when an LLM solution is ready for deployment represents a nuanced challenge that 

goes far beyond traditional software or ML deployment criteria. Unlike conventional applications, 

where performance can be measured through straightforward metrics, LLM solutions introduce 

multi-dimensional complexities that require holistic evaluation. These models operate in a domain 

of probabilistic outputs, natural language understanding, and context-dependent responses, 

which means readiness cannot be captured by a single, linear measurement. Instead, deployment 

preparedness becomes a sophisticated assessment involving technical performance, ethical 

considerations, business alignment, and user experience adaptability. 

The power of LLMs comes with significant operational risks that require specialized guardrails and 

safety mechanisms—considerations that extend far beyond traditional MLOps risk management.

Challenges and risks in LLMOps
LLM operations present unique challenges and risks that organizations must carefully navigate:

•	 Hallucinations and misinformation: LLMs can generate convincing but incorrect 

information, posing significant risks in domains requiring factual accuracy, such as 

healthcare, finance, and legal applications.

•	 Bias and fairness issues: Models may perpetuate or amplify societal biases present in 

training data, potentially leading to discriminatory outputs that harm specific groups.

•	 Security vulnerabilities: LLMs can be susceptible to prompt injection attacks, data leakage, 

and other security concerns that traditional applications might not face.

•	 Compliance and regulatory risks: Rapidly evolving regulations around AI governance 

create complex compliance challenges, especially for global organizations.

•	 Deployment and operational complexity: The experimental nature of LLM development 

makes standardizing deployment practices difficult, potentially leading to inconsistent 

performance.

To address these challenges, organizations are increasingly adopting Responsible AI (RAI) 

frameworks. RAI emerges as a crucial approach to ensuring that technological advancement 

aligns with human values and societal well-being.



Exploring Next-Gen MLOps224

Responsible AI
RAI is a critical framework for organizations implementing AI technologies, focusing on ethical, 

transparent, and accountable practices. RAI is used to ensure AI systems are developed and 

deployed in ways that benefit society while mitigating potential risks. It’s important for a 

multitude of reasons:

•	 Trust and reputation: RAI practices help businesses build trust with customers, 

stakeholders, and the public, enhancing the company’s reputation and fostering long-

term loyalty.

•	 Risk mitigation: RAI identifies and mitigates risks associated with AI systems, including 

biases, privacy concerns, and unintended consequences, preventing costly legal and 

regulatory issues.

•	 Regulatory compliance: With increasing global regulations for AI, businesses must adhere 

to RAI principles to ensure compliance and avoid penalties. 

•	 Innovation and value creation: Surprisingly, RAI can improve product quality and drive 

innovation. A survey of company officials ranked product quality as the area receiving 

the most value from implementing RAI practices.

•	 Ethical considerations: RAI ensures AI systems are designed with power dynamics and 

ethics in mind, minimizing risks and preserving human dignity and rights.

By implementing RAI, organizations can harness AI’s transformative potential while addressing 

inherent risks, ultimately leading to sustainable business growth and positive societal impact. 

Azure RAI
Building upon RAI principles, Azure AI introduces two critical concepts:

•	 Evaluation: Evaluation encompasses a comprehensive set of metrics to assess the quality, 

performance, and safety of AI-generated content, including AI-assisted quality metrics, 

NLP-based metrics, and risk and safety evaluators. These metrics help developers gauge 

the accuracy, relevance, and potential risks of their AI applications.

•	 Content safety: Azure AI Content Safety complements it and provides robust tools for 

detecting and mitigating harmful content in text and images, offering APIs and interactive 

studios to identify and categorize potentially offensive, risky, or undesirable material 

across various severity levels.

Together, these features enable organizations to develop and deploy AI solutions that not only 

perform well but also adhere to ethical standards and safety guidelines. 



Chapter 11 225

RAI practices are integrated throughout the development lifecycle of LLM applications using 

Azure AI’s prompt flow. This tool incorporates evaluation metrics and content safety checks at 

various stages of development. During prompt engineering, developers can use prompt flow to 

test and refine prompts, ensuring they adhere to ethical guidelines and produce safe, unbiased 

outputs. The tool allows for the automated testing of prompts against diverse datasets, helping 

identify potential fairness issues. Content safety filters can be applied to both inputs and outputs, 

mitigating risks of harmful content. Prompt flow also facilitates the continuous monitoring and 

evaluation of deployed models, enabling developers to track performance metrics, detect drift, and 

assess the model’s adherence to RAI principles over time. By providing a structured workflow that 

emphasizes testing, monitoring, and iterative improvement, prompt flow helps developers embed 

RAI practices from the initial design phase through to the deployment and ongoing maintenance 

of LLM applications. 

Figure 11.3 shows the view from Azure Foundry of a sample evaluation result. The evaluation was 

run on an LLM that generates images based on a prompt, and after the generation, the automated 

process checks for certain metrics and flags if something is not as per the expectation. 

Figure 11.3 – Evaluation result of a prompt

Broadly speaking, when the LLM solution is ready—on the basis of satisfactory evaluation results 

in terms of both business KPIs and RAI KPIs—it can be deployed.



Exploring Next-Gen MLOps226

Deployment
The journey of an LLM solution from development to operational status is more complex than 

traditional software deployment. At its core, deployment transforms a carefully crafted artifact—a 

collection of prompts, language models, custom tools, and supporting scripts—into a live, 

functional system.

When a prompt developer is satisfied with the quality and performance of the solution, it 

transitions from an experimental prototype to an operational tool. In Azure Foundry, this process 

is elegantly managed through a sophisticated cloud-based development and storage ecosystem, 

as shown in Figure 11.4.

Figure 11.4 – Prompt flow development, evaluation, and deployment

The Azure AI Foundry portal provides a comprehensive interface for developing, evaluating, and 

deploying LLM solutions.

The prompt flow is not merely a static piece of code, but a dynamic entity that moves seamlessly 

between local development environments and cloud infrastructure. The cloud-based storage in 

Azure Foundry automatically generates a dedicated flow folder within the AML workspace. This 

folder, typically located in the Users/<username>/promptflow directory, becomes the central 

repository for the entire solution. The prompt flow folder structure, as shown in Figure 11.5, in 

Azure Foundry can be used to enable version control and seamless transitions between local and 

cloud development. 



Chapter 11 227

Figure 11.5 – promptflow file share backup

For teams committed to robust version control, Azure provides straightforward mechanisms for 

exporting and importing flow configurations. Developers can download their entire flow as a ZIP 

package, work on it locally using tools such as VS Code with the Prompt flow extension, and then 

reimport the refined version. This flexibility supports continuous development cycles, allowing 

teams to leverage both cloud resources and local development tools.

The integration capabilities extend to continuous integration and continuous deployment (CI/

CD) pipelines. By utilizing the prompt flow CLI or SDK, teams can automate flow runs, ensuring 

consistent testing and deployment processes. Azure AI Studio provides a visual interface that 

offers transparency and accessibility throughout this journey.

Once an LLM solution is successfully deployed, the focus shifts to maintaining operational 

excellence through robust monitoring and alerting systems, which are crucial for ensuring ongoing 

performance and reliability.

Alerting and monitoring
Monitoring an LLM solution requires a comprehensive approach that goes beyond traditional 

performance metrics. The dynamic and generative nature of LLMs demands a nuanced set of Key 

Performance Indicators (KPIs) that capture the multifaceted aspects of AI service performance:



Exploring Next-Gen MLOps228

•	 Request metrics provide the first layer of insight, tracking the volume and rate of 

interactions with the AI service. These metrics, such as the number of HTTP requests 

and requests per second, offer a quantitative view of system utilization. Complementing 

these are token usage metrics, which provide granular visibility into the computational 

resources consumed by input prompts and generated outputs.

•	 Performance metrics delve deeper, measuring critical aspects such as latency and response 

time. These indicators are crucial for understanding the real-world responsiveness of 

the LLM solution. Quality metrics take this a step further, incorporating sophisticated 

measures such as precision, recall, and F1 score to assess the accuracy and reliability of 

the model’s outputs.

Azure AI’s monitoring ecosystem is designed to provide comprehensive visibility through multiple 

channels. Azure Monitor serves as a central hub for setting up alerts based on collected metrics 

and logs. The AI Foundry portal offers preconfigured monitoring results and visualizations, while 

custom thresholds can be defined to trigger specific alerts tailored to organizational requirements:

•	 Safety metrics represent a unique and critical dimension of LLM monitoring. By tracking 

the volume of blocked or potentially harmful content, organizations can ensure their AI 

solutions maintain ethical standards and comply with RAI principles. This goes beyond 

traditional performance monitoring, embedding safety directly into the operational 

framework.

•	 The notification configuration allows for real-time alerting, ensuring that any significant 

deviations or potential issues are immediately brought to the attention of the development 

team. Whether through email notifications or integrated alert systems, this approach 

enables proactive management of the LLM solution.

By integrating these comprehensive monitoring strategies, organizations can not only track the 

performance of their LLM solutions but also continuously refine and improve them, ensuring 

they remain effective, safe, and aligned with business objectives.

Having explored the operational aspects of LLM solutions, from development through deployment 

to monitoring, let’s now examine the broader benefits and emerging trends that are shaping the 

future of LLM development.

Benefits of and trends in LLM developments
While LLMOps is still in its early stages, the benefits to organizations in implementing these 

practices are substantial and multifaceted:



Chapter 11 229

•	 Accelerated development cycles: LLMOps frameworks reduce the time to production 

by standardizing development workflows, automating evaluations, and enabling rapid 

iteration on prompts and retrievers.

•	 Enhanced model performance: Systematic prompt engineering and evaluation 

methodologies lead to more reliable, accurate, and contextually appropriate model outputs 

that better serve business requirements.

•	 Reduced operational risk: Comprehensive monitoring, content safety filters, and RAI 

practices mitigate potential harms, ensuring compliance with emerging regulations and 

organizational governance frameworks.

•	 Cost optimization: Efficient prompt design, context window utilization, and retrieval 

systems minimize token usage and computational resources, significantly reducing 

operational expenses.

•	 Knowledge integration: RAG implementations enable organizations to leverage their 

proprietary data alongside general model capabilities, creating truly differentiated AI 

solutions that competitors cannot easily replicate.

These substantial benefits are driving rapid adoption and innovation in the LLMOps space, 

with several emerging trends reshaping how organizations approach LLM development and 

deployment.

Emerging trends transforming LLMOps
The LLMOps landscape is evolving rapidly, with several key trends emerging that will define the 

future of LLMOps:

•	 Multimodal integration: LLMs are rapidly evolving beyond text, with models integrating 

text, code, image, and audio understanding for more comprehensive applications. Systems 

such as GPT-4V, Claude Opus, Gemini, and DALL-E 3 demonstrate how these capabilities 

enable new use cases from visual reasoning to cross-modal content generation.

•	 AI copilots for developers: Tools such as GitHub Copilot, Amazon CodeWhisperer, and 

Microsoft Dev Center are transforming development workflows, with LLMs handling 

repetitive coding tasks, suggesting optimizations, and even generating test cases.

•	 Explainable AI and ethical frameworks: Organizations are implementing robust 

evaluation methodologies that track model reasoning, assess factuality, and detect 

potential biases. Projects such as Anthropic’s Constitutional AI and Microsoft’s Responsible 

AI Toolbox exemplify this trend.



Exploring Next-Gen MLOps230

•	 Fine-tuning alternatives: Techniques such as Parameter-Efficient Fine-Tuning (PEFT), 

RAG, and prompt-engineering frameworks are emerging as cost-effective alternatives to 

full model fine-tuning.

•	 Agentic systems and orchestration: LLMs are increasingly being deployed as orchestrators 

within multi-agent systems, coordinating specialized tools to solve complex tasks. 

Examples include AutoGPT, LangChain, and Microsoft’s Semantic Kernel framework.

•	 Domain-specific optimization: Moving beyond general-purpose models, organizations 

are creating domain-optimized LLM implementations for healthcare, legal, financial 

services, and other specialized domains requiring subject matter expertise.

•	 Decentralized LLM infrastructure: Open source models such as Llama, Mistral, and Falcon 

are enabling organizations to deploy LLMs on-premises, addressing data sovereignty, 

compliance, and cost concerns associated with API-only access.

•	 Continuous learning systems: Beyond static deployments, systems that implement 

ongoing learning from user interactions and feedback loops are emerging, allowing models 

to adapt to changing requirements and improve over time.

As the technology matures, we can anticipate the emergence of new programming paradigms 

and increased democratization of software development, potentially allowing individuals with 

limited coding experience to contribute to projects through natural language interfaces and 

LLM-assisted development environments.

Looking ahead, we can expect even more robust tools and best practices to emerge as LLMOps 

becomes a critical part of AI/ML workflows.

The current landscape of LLM app development is characterized by rapid innovation and 

increasing specialization. Developers are moving away from defaulting to general-purpose models 

such as ChatGPT and exploring open source alternatives such as Llama 2 and Mixtral. This shift 

allows for greater flexibility and customization, with a growing focus on fine-tuning models for 

specific domains such as healthcare, finance, and law. The integration of LLMs into software 

development workflows is also gaining traction, with enhanced code generation capabilities and 

natural language programming interfaces emerging as key trends.

Looking to the future, several exciting developments are on the horizon for LLM app development. 

Multimodal learning is an educational approach that integrates multiple sensory inputs and 

learning styles to create a more comprehensive and effective learning experience. It combines 

various modes of information delivery, such as visual, auditory, and kinesthetic elements, to cater 

to diverse learning preferences and enhance information retention. 



Chapter 11 231

This approach recognizes that each learner has unique strengths and preferences, offering 

multiple pathways to understanding and accommodating different learning needs. This mode 

of learning is expected to become more prevalent, with LLMs integrating text, code, and image 

understanding for more complex applications. The concept of LLMs as copilots for developers is 

gaining momentum, promising to accelerate the development process by handling repetitive tasks 

and suggesting innovative approaches. Additionally, there’s a growing emphasis on explainable 

AI and ethical development practices to address concerns about bias and transparency in LLM 

outputs. Examples of this trend include OpenAI’s development of DALL-E 3 for text-to-image 

generation, Anthropic’s research into constitutional AI for safer model outputs, and Microsoft’s 

integration of GitHub Copilot into development workflows. Google’s Gemini and Meta’s Llama 

have also made strides in multimodal capabilities, demonstrating how LLMs are evolving beyond 

text-only applications toward more comprehensive AI solutions. As the technology matures, we 

can anticipate the emergence of new programming paradigms and increased democratization 

of software development, potentially allowing individuals with limited coding experience to 

contribute to projects.

With these trends and benefits in mind, let’s examine how these concepts are being applied 

in practice through a detailed case study that demonstrates the implementation of LLMOps 

principles using Azure AI tools.

Practical example: Implementing LLMOps with Azure 
AI
Case study: Revolutionizing patient triage with an AI-powered symptom assessment chatbot 

Background
MedConnect, a progressive healthcare technology start-up, recognized the growing challenge 

of patient triage and initial medical screening. Emergency rooms and healthcare providers 

were overwhelmed with patients seeking initial medical advice, leading to long wait times and 

inefficient resource allocation. The company envisioned an AI-powered solution that could 

provide initial symptom assessment, offer preliminary guidance, and help patients determine 

the appropriate level of medical care.

Solution development 
The team at MedConnect chose Azure AI as their primary platform for developing a sophisticated 

symptom assessment chatbot. Their goal was to create a solution that could understand patient 

symptoms, provide initial guidance, and route patients to the most appropriate care pathway 

while maintaining the highest standards of RAI.



Exploring Next-Gen MLOps232

They began by selecting a base LLM that could handle medical dialogues effectively. Initial 

experiments with general-purpose models revealed significant limitations in domain-specific 

understanding. To address this, the team implemented a RAG approach, creating a comprehensive 

medical knowledge base drawn from reputable medical databases and clinical guidelines.

Prompt engineering and model customization 
The development process was inherently iterative. The team spent considerable time crafting 

prompts that could elicit precise medical information while maintaining a compassionate and 

clear communication style. They experimented with various prompt structures, including zero-

shot and few-shot prompting techniques, to improve the model’s ability to understand and 

respond to complex medical scenarios. 

Prompt flow in Azure Foundry became instrumental in this phase. Developers could systematically 

test and refine prompts, ensuring that the chatbot could handle a wide range of medical scenarios 

while maintaining accuracy and empathy. They implemented multiple safety checks to prevent 

the generation of potentially harmful or misleading medical advice.

RAI implementation 
Recognizing the critical nature of healthcare interactions, MedConnect placed significant 

emphasis on RAI principles. They used Azure AI’s content safety tools to implement rigorous 

filters that prevented the chatbot from providing inappropriate or potentially dangerous medical 

recommendations. The evaluation metrics went beyond traditional performance indicators, 

incorporating ethical considerations and patient safety as primary concerns. 

The team developed a comprehensive set of evaluation criteria that included the following:

•	 Medical accuracy of responses

•	 Clarity of communication

•	 Potential for misinterpretation

•	 Alignment with clinical guidelines

•	 Emotional sensitivity in communication

Deployment and monitoring
Once the initial version was developed, MedConnect deployed the chatbot through Azure AI, 

leveraging the platform’s robust monitoring capabilities. They set up detailed alerting mechanisms 

to track KPIs such as request volumes, response times, and safety metric violations.



Chapter 11 233

The monitoring dashboard in Azure Foundry provided real-time insights into the chatbot’s 

performance. Custom thresholds were established to trigger alerts for any deviations from 

expected performance or potential safety concerns. This allowed the team to continuously refine 

and improve the system.

Results and impact
The deployed solution demonstrated remarkable outcomes. During initial trials, the chatbot 

successfully handled over 70% of initial patient inquiries, providing accurate preliminary 

assessments and appropriate care recommendations. Emergency room wait times for non-critical 

cases were reduced by an average of 45 minutes, and patients reported high satisfaction with the 

initial screening process. 

More importantly, the chatbot consistently demonstrated adherence to RAI principles. It 

successfully identified scenarios requiring immediate human medical intervention and provided 

clear, compassionate guidance that prioritized patient safety.

Future developments 
Looking ahead, MedConnect plans to expand the chatbot’s capabilities by incorporating 

multimodal learning. Future iterations may include the ability to analyze uploaded medical 

images, integrate with wearable health devices, and provide more personalized health guidance. 

The success of this project highlighted the transformative potential of LLMOps in healthcare, 

demonstrating how carefully developed AI solutions can improve patient care while maintaining 

the highest standards of ethical and responsible technology deployment.

Summary
This chapter has provided a strategic overview of LLMOps—a critical evolution of MLOps 

principles that addresses the unique challenges of operationalizing LLMs. Rather than treating 

LLMOps as merely an extension of traditional ML operations, we’ve established its distinct 

operational paradigm, characterized by specialized workflows, evaluation methodologies, and 

deployment strategies. We’ve examined the architectural components essential for enterprise-

grade LLM implementations: from the strategic selection of foundation models to the integration 

of sophisticated RAG systems, the development of robust prompt engineering frameworks, and 

the implementation of comprehensive monitoring solutions. Each of these components demands 

expertise that bridges traditional software engineering with emerging AI governance principles.



Exploring Next-Gen MLOps234

The exploration of Azure’s implementation showcases how enterprise platforms are evolving 

to accommodate the unique requirements of LLM systems. The case study of MedConnect 

demonstrated the practical application of these principles in high-stakes environments where 

performance, safety, and ethical considerations are paramount. For DevOps practitioners, cloud 

engineers, and SREs already versed in traditional operational paradigms, LLMOps presents both 

familiar patterns and novel challenges. The field demands a sophisticated understanding of model 

behavior, retrieval systems, and evaluation methodologies that extend well beyond conventional 

software metrics.

As this field continues its rapid evolution, practitioners must maintain a dual focus: implementing 

today’s best practices while actively developing frameworks flexible enough to accommodate 

tomorrow’s advancements. The lines between model architecture, prompt engineering, retrieval 

system design, and operational excellence continue to blur, creating an environment where 

operational expertise directly impacts model performance and business outcomes. This chapter 

serves as a strategic cornerstone for professionals looking to build mature LLMOps practices—

establishing a framework that acknowledges the complexity of the domain while providing 

actionable insights for implementation. The journey from MLOps to LLMOps is not merely an 

incremental step but a transformative shift in how we conceptualize, implement, and govern AI 

systems at scale.



Chapter 11 235

Stay Sharp in Cloud and DevOps – Join 44,000+ 
Subscribers of CloudPro
CloudPro is a weekly newsletter for cloud professionals who want to stay current on the fast-evolv-

ing world of cloud computing, DevOps, and infrastructure engineering.

Every issue delivers focused, high-signal content on topics like:

•	 AWS, GCP & multi-cloud architecture

•	 Containers, Kubernetes & orchestration

•	 Infrastructure as Code (IaC) with Terraform, Pulumi, etc.

•	 Platform engineering & automation workflows

•	 Observability, performance tuning, and reliability best practices

Whether you’re a cloud engineer, SRE, DevOps practitioner, or platform lead, CloudPro helps you 

stay on top of what matters, without the noise.

Scan the QR code to join for free and get weekly insights straight to your inbox:

https://packt.link/cloudpro

https://packt.link/cloudpro




packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 

industry leading tools to help you plan your personal development and advance your career. For 

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from 

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packtpub.com
www.packtpub.com




Other Books  
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure Cloud Projects

Hamid Sadeghpour Saleh

ISBN: 978-1-83620-423-7

•	 Set up Azure and explore cloud fundamentals

•	 Implement Entra ID and hybrid identity solutions

•	 Build and secure storage with Azure Blob Storage

•	 Design virtual networks and configure VPN gateways

•	 Deploy your first web app using Azure App Service

•	 Automate workflows with Azure Functions

•	 Create CI/CD pipelines with Azure DevOps

https://www.amazon.com/dp/183620423X


Other Books You May Enjoy240

Microsoft Azure Fundamentals Certification and Beyond

Steve Miles

ISBN: 9-781-83763-059-2

•	 Core cloud computing concepts and how they apply to Azure

•	 Azure’s key services, deployment methods, and management tools

•	 Implementation of security concepts, identity management, and governance features

•	 Resource deployment, monitoring, and compliance best practices

•	 Skills to manage and optimize Azure environments effectively

https://www.amazon.com/dp/1837630593


Other Books You May Enjoy 241

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply 

today. We have worked with thousands of developers and tech professionals, just like you, to help 

them share their insight with the global tech community. You can make a general application, 

apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Hands-On MLOps on Azure, we’d love to hear your thoughts! If you purchased 

the book from Amazon, please click here to go straight to the Amazon review page for 

this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 

excellent quality content.

authors.packt.com
https://packt.link/r/1836200331




Index

A
advanced alerting  169
alert management

alert fatigue, avoiding  171, 172
appropriate alert thresholds, setting  171
best practices  170
model deployment failure alerts,  

refining  172, 173
alerts

creating  162-165
extending, to multiple workspaces  166
integrating, with incident management  170

Amazon SageMaker CLI
reference link  27

Amazon Web Services (AWS)  208
Amazon Web Services Simple Storage 

Service (AWS S3)  67
AML CLI  31, 36, 43

basic structure  38
usage  38

AML Compute Instances  110
AML environments  76
AML pipelines

benefits  73, 74
data input  74
data preparation  74
data transformation  75
model prediction  75
model scoring  75
model training  75

AML workflow
data acquisition  67
data preprocessing  67
model deployment  68
model evaluation  68
model training  67, 68
stages as reusable parts, benefits  68

AML workspace  33, 39, 40, 41
components  34, 35
data, registering  45, 46
environments  35
features  33, 34
models  35
resources, managing  35

AML workspace, features
access control  34
collaboration  34
cost management  34
integration, with DevOps practices  34
monitoring and tracking  34
resource management  33
scalability and security  34

API gateway  106
AutoML  57
AWS CLI with SageMaker  26, 27
Azure AI’s prompt flow  225
Azure Application Insights  40
Azure Batch  108, 109
Azure Blob Storage  109, 169

advanced log analysis  169
complex alerting logic  169



Index244

ML for alerting  170
Webhook integrations  170

Azure Container Registry (ACR)  40
Azure Databricks  108, 110
Azure Data Factory (ADF)  109, 110
Azure Data Lake Storage (ADLS)  67
Azure Key Vault  132
Azure Kubernetes Service (AKS)  68, 200
Azure ML  31, 65, 154

components  69-3
lineage tracking  128, 129
metadata management  88, 89
monitoring categories  154
pipelines  73-75

Azure ML CLI  25, 26
model registration  95, 96
reference link  26

Azure ML CLI v2  25
MLflow tracking, setting up  53

Azure ML MLflow integration  132
Azure ML pipeline  178-180

GitHub Actions, for CI/CD  181-185
real-world scenario  185-192

Azure ML pipeline YAML  183
Azure ML platform logs

exploring  160-162
Azure ML registry  90, 91
Azure Monitor Application Insights  132
Azure Policy for ML  132
Azure RAI  224
Azure role-based access control  

(Azure RBAC)  201
Azure Role-Based Access Control (RBAC)  132

B
batch inferencing  107, 116

characteristics  107, 108
compute target  122
deployment configuration  120-122
deployment infrastructure  109, 110
error threshold  123
implementation, in AML  108
input and output  122
mini-batch size  122
retry settings  123
scoring script  116, 117

Bayesian optimization  57
bias detection  133

data auditing  133
fairness metrics  133
transparency  133

bias mitigation  134
algorithmic fairness  134
post-processing adjustments  134
preprocessing techniques  134

C
centralized collection

configuring  167-169
challenges and solutions, demand 

forecasting on Azure
regional time-series forecasting  202
scalability and performance  202

challenges and solutions, handwriting 
assistance application

real-time inference performance  208
variability, in handwriting styles  207

challenges and solutions, real-time precision 
delivery on AWS

complex route optimization  213



Index 245

real-time processing at scale  213
CI/CD pipelines  227
Comet.ml  52
command-line interfaces (CLIs)  23
components, AML workspace

compute instances  34
data  35
data stores  35

compute clusters  34
compute instances  34
concept drift  7, 143
conda  78
Continuous Delivery (CD)  5, 8
Continuous Integration (CI)  5, 7
continuous integration/continuous 

deployment (CI/CD) pipelines  34
continuous validation framework  131
core principles, DevOps

Continuous Delivery (CD)  5
Continuous Integration (CI)  5
Infrastructure as Code (IaC)  5
microservices  5

custom model formats  92
challenges  93
considerations  93

D
DALL-E 3  231
data  35

registering, in AML workspace  45, 46
data collection

key monitoring signals, in Azure ML  153, 154
monitoring, setting up with  

collected data  147-153
setting up  145, 146

DataCollector  143, 144
critical features  145
model monitoring setup  144
model-specific metrics and anomalies  144
monitoring signals  144

data drift  143
data management

in MLOps  10
data preparation  43

benefits  44
steps  43

data privacy  12
data processing  221
data quality  10
datastores  94
Data Version Control (DVC)  21
data versioning  10
demand forecasting, on Azure

business context and requirements  197
challenges and solutions  202, 203
implementation architecture  198

deployment metrics  156, 157
DevOps  4

core principles  5
software development, revolutionizing  5, 6

DevOps-MLOps connection  6, 7

E
encryption  12
endpoint metrics  155, 156
end-to-end Azure ML pipelines

implementing  178
experiments  41

advantages  42, 43
creating, by running jobs  46-49



Index246

setting up  46
tracking tools  52

experiment tracking
in MLOps  10

F
faster experimentation, MLOps

A/B testing  16
automation  15
collaboration tools  16
containerization  15
data versioning  16
early stopping  15
experiment tracking and reproducibility  15
feature engineering automation  16
hyperparameter tuning  15
lightweight infrastructure  15
rapid prototyping frameworks  15
version control  15

feature engineering  10

G
GCP gcloud CLI  27

reference link  28
GitHub Actions workflow YAML  183
Google Cloud Platform (GCP)  203
Google Kubernetes Engine (GKE)  206
governance  126

data and lineage information, securing  130
implementing, across Azure ML lifecycle  130
in action  134-138
lineage  128
model integrity, ensuring  127
operationalizing  132, 133
requirements  127

strategies, for compliance and quality 
assurance  131, 132

grid search  57

H
handwriting assistance application  203

business context and requirements  203
challenges and solutions  207, 208
implementation architecture  204

hyperparameter tuning  56, 57
AutoML  57
Bayesian optimization  57
grid search  57
random search  57

I
implementation architecture, demand 

forecasting on Azure
CI/CD pipeline  199
data pipeline  198
deployment and serving  199
feedback loop  201
model development pipeline  198
monitoring and logging  200
platform-specific solution  201

implementation architecture, handwriting 
assistance application

CI/CD pipeline  205, 206
data pipeline  204
deployment and serving  206
feedback loop  207
model development pipeline  204, 205
monitoring and logging  206

implementation architecture, real-time 
precision delivery on AWS

CI/CD pipeline  211
data pipeline  209, 210



Index 247

deployment and serving  211
feedback loop  212
model development pipeline  210
monitoring and logging  212

inference server  105
Infrastructure as Code (IaC)  5, 8
infrastructure metric monitoring

deployment metrics  156, 157
endpoint metrics  155, 156
monitoring categories  155

infrastructure usage monitoring  143
isolated environments

benefits  76, 77
IT Service Management (ITSM) platform  170

J
jobs  41

advantages  42, 43
comparing, in experiment  53-56

K
Key Performance Indicators (KPIs)  143, 227
Key Vault  40
Kubernetes  105

L
Large File Storage (LFS)  21
Large Language Model Operations  

(LLMOps)  217
alerting  227, 228
benefits  228
challenges and risks  223
deployment  226, 227
life cycle  222
monitoring  227, 228

trends  229-231
Large Language Models (LLMs)  217, 218

limitations  218, 219
lineage logging and documentation

best practices  129
LLMOps implementation with Azure AI, 

practical example
background  231
deployment  232
future developments   233
monitoring  232
prompt engineering and model 

customization  232
RAI implementation  232
results and impact  233
solution development  231

LLM solution development
components  219, 220
process  220-222
readiness for deployment  223

LLM-specific parameters  220
load balancer  106
Local Interpretable Model-agnostic 

Explanations (LIME)  20
Log Analytics workspaces  166

M
machine learning (ML)  65
managed endpoints  105
Mean Absolute Error (MAE)  19
Mean Squared Error (MSE)  68
metadata management

practices, reasons  88
with Azure Machine Learning (AML)  88, 89

microservices  5



Index248

ML CLIs  23
cloud-specific tools  23
for cloud providers  25
management tasks  24
open source ML frameworks  23
selecting, factors  23
standalone MLOps tools  23

MLflow  52, 92, 129
MLflow tracking

setting up, with AzureML CLI v2  53
ML model monitoring

infrastructure usage monitoring  143
model performance,  

versus infrastructure  143
purpose  142

ML models 141
deployment challenges  11
performance and maintenance  12
quality assurance (QA), practices  19-22

ML models, key stages
data preparation  32
decision  32
evaluation  32
score  32
training  32

MLOps  3, 4, 159
alerts and notifications  160
collaboration  67
Continuous Delivery (CD)  8
Continuous Integration (CI)  7
data management  10
development of models  16
experiment tracking  10
faster experimentation  15, 16
in AI era  8, 9
Infrastructure as Code (IaC)  8
models, deploying into production  16-18

process mind map  9
reusability  67
security and compliance  11, 12
tools and technologies  13

MLOps team
building  13, 14
collaboration  13
roles  13
skills  13

ML pipeline
building, with AML CLI, Git, and GitHub 

Actions  80-85
model deployment, options  104

batch inference  107, 108
online inference  104, 105

model experiments
comparing  52
tracking  52

model format  92
custom model formats  92
selecting  93
standardizing  92

model metadata  88
model optimization  56

evaluation and iteration  60, 61
example of hyperparameter tuning, with 

AML CLI  58, 59
hyperparameter tuning  57
sweep jobs  57

model packaging  97
commands  97, 98

model registration  89, 90, 94, 95
with Azure ML CLI  95, 96

models
registering, based on metrics  56



Index 249

model selection process  50
artifacts, collecting  50
evaluation criteria, defining  50
metrics, collecting  50
models, comparing  51
parameters  51

model validation features  132
multi-cloud CI/CD

for ML workflows  185-192
multi-cloud ML pipelines

best practices  192, 193
challenges  192

multimodal learning  230

N
neural network (NN) architectures  76

O
online inferencing  104, 111

characteristics  104
deployment  114, 115
deployment infrastructure  105, 106
environment, configuring  113, 114
implementation, in AML  105
model, preparing  111
model, registering  112
on deployment  115
scoring script  112, 116, 117

P
package

creating  99-101
package operation

properties  98, 99
Parameter-Efficient Fine-Tuning (PEFT)  230

performance metrics  221, 222
pip package  78
point-of-sale (POS) systems  198
prompt design  221

R
random search  57
real-time precision delivery, on AWS  208

business context and requirements  209
challenges and solutions  212
implementation architecture  209

Responsible AI  224
REST API  110
Root Mean Squared Error (RMSE)  19

S
scoring script  112
serving framework  105
SHapley Additive exPlanations (SHAP)  20
software dependencies

reproducing, in projects  77-79
tracking, in projects  77-79

Software Development Kits (SDKs)  110
storage account  40
subject matter experts (SMEs)  66
sweep jobs  57

T
TensorBoard  52
tools and technologies, MLOps  13
typical batch inference architecture  109



Index250

U
Uniform Resource Identifier (URI)  95

V
virtual environment

setting up  36-38

W
workflow optimization  221



Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free 

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836200338

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836200338



	Cover
	Copyright
	Contributors
	Tabel of Contents
	Preface
	Part 1: Foundations of MLOps
	Chapter 1: Understanding DevOps to MLOps
	From DevOps to MLOps: Bridging the operational gap
	DevOps: A foundation for MLOps
	Revolutionizing software development

	The DevOps–MLOps connection
	Key DevOps concepts in MLOps
	CI/CD for the ML lifecycle

	The importance of MLOps in the AI era

	Principles and practices of MLOps
	Data management in MLOps
	Experiment tracking
	Model deployment challenges
	Security and compliance in MLOps
	Model performance and maintenance
	MLOps tools and technologies
	Building an MLOps team
	Faster experimentation and development of models
	Deployment of models into production

	Quality assurance and end-to-end lineage tracking
	MLOps toolkits: Streamlining the ML lifecycle with ML CLIs
	Types of ML CLIs
	Choosing the right ML CLI
	Common management tasks with ML CLIs
	Exploring ML CLIs for different cloud providers
	Azure ML CLI v2
	AWS CLI with SageMaker
	GCP gcloud CLI

	Benefits of organized structure

	Summary

	Chapter 2: Training and Experimentation
	Key stages in building an ML model
	AML workspace
	Key features of an AML workspace
	Key components of a workspace
	Managing workspace resources

	AML CLI
	Setting up a virtual environment
	Basic structure and usage of the AML CLI
	Workspace: A closer look

	Jobs and experiments in AML
	Jobs
	Experiments
	Jobs and experiments: Why they matter

	Data preparation
	Steps in data preparation
	What are the benefits of proper data preparation?

	Registering data in the AML workspace
	How can data be registered?

	Setting up an experiment
	Creating a simple experiment by running a job
	Choosing the model/algorithm
	Defining the evaluation criteria
	Collecting metrics and artifacts
	Comparing models
	Selecting the best model
	Tracking and comparing model experiments in ML
	Tools for tracking
	Setting up MLflow tracking with AzureML CLI v2
	Comparing jobs in an experiment
	Register the best model based on metrics

	Optimizing models
	Hyperparameter tuning
	Tuning techniques
	Sweep jobs
	Example using the CLI
	Evaluation and iteration


	Summary
	Tools documentation

	Part 2: Implementing MLOps
	Chapter 3: Reproducible and Reusable ML
	Defining repeatable and reusable steps for data preparation, training, and scoring
	Learning about components and pipelines in AML
	Components
	Pipelines
	Understanding ML environments

	Tracking and reproducing software dependencies in projects
	Hands-on example – Building an ML pipeline with AML CLI, Git, and GitHub Actions
	Summary
	Join the CloudPro Newsletter with 44000+ Subscribers

	Chapter 4: Model Management (Registration and Packaging)
	Model metadata
	Metadata management using Azure Machine Learning (AML)

	Model registration
	AML registry

	Model format
	Standardizing the model format (MLflow)
	Custom model formats
	Challenges and considerations
	Choosing the right format


	Datastores
	Registering models in action
	Examples of model registration with the AML CLI
	Model packaging
	Commands for model packaging
	Properties of a package operation
	Creating a package


	Summary

	Chapter 5: Model Deployment: Batch Scoring and Real-Time Web Services
	Model deployment options
	Real-time inference
	Implementation in AML
	Deployment infrastructure

	Batch inference/scoring
	Implementation in AML
	Deployment infrastructure


	Online inferencing
	Preparing the model
	Registering the model
	Scoring script
	Configuring the environment
	Deployment
	Inference on deployment

	Batch inferencing
	Scoring script
	Configuring the environment for online deployment
	Deployment configuration
	Configuring the environment for batch deployment
	Additional concepts related to batch deployment

	Summary

	Chapter 6: Capturing and Securing Governance Data for MLOps
	Key governance focus areas
	Ensuring model integrity
	Compliance requirements in ML
	Lineage
	Tools and techniques for lineage tracking in AML
	Best practices for logging and documenting lineage


	Implementing governance across the AML lifecycle
	Securing data and lineage information

	Governance strategies for compliance and quality assurance
	Operationalizing governance in ML

	Ethical considerations
	Bias detection and mitigation
	Bias detection
	Bias mitigation


	Comprehensive governance in action
	Putting the practice together

	Summary

	Chapter 7: Monitoring the ML Model
	The purpose of monitoring
	Monitoring: Model performance versus infrastructure
	Infrastructure usage monitoring

	Learning about DataCollector
	Setting up data collection
	Setting up monitoring with collected data
	Key monitoring signals in AML

	Infrastructure metric monitoring
	Endpoint metrics
	Deployment metrics

	Summary
	Join the CloudPro Newsletter with 44000+ Subscribers

	Chapter 8: Notification and Alerting in MLOps
	Understanding alerts and notifications in the MLOps context
	Exploring AML platform logs
	Creating an alert
	Extending alerts to multiple workspaces
	Introduction to Log Analytics workspaces
	Configuring centralized collection

	Advanced alerting
	Integrating alerts with incident management

	Best practices for alert management
	Setting appropriate alert thresholds
	Avoiding alert fatigue
	Example: Refining model deployment failure alerts

	Summary

	Part 3: MLOps and Beyond
	Chapter 9: Automating the ML Lifecycle with ML Pipelines and GitHub Workflows
	Implementing end-to-end AML pipelines
	AML pipeline
	Expanding beyond Azure: GitHub Actions for CI/CD

	Real-world scenario: Multi-cloud CI/CD for ML workflows
	Challenges and best practices
	Common challenges in multi-cloud ML pipelines
	Best practices

	Summary

	Chapter 10: Using Models in Real-world Applications
	Recapping fundamental concepts
	Case study 1: Demand forecasting on Azure
	Business context and requirements
	Implementation architecture
	Data pipeline 
	Model development pipeline 
	CI/CD pipeline 
	Deployment and serving 
	Monitoring and logging 
	Feedback loop 
	Platform-specific solution

	Challenges and solutions
	Regional time-series forecasting 
	Scalability and performance 


	Case study 2: Handwriting assistance for children on Google Cloud Platform
	Business context and requirements
	Implementation architecture
	Data pipeline 
	Model development pipeline 
	CI/CD pipeline
	Deployment and serving 
	Monitoring and logging 
	Feedback loop

	Challenges and solutions 
	Variability in handwriting styles 
	Real-time inference performance


	Case study 3: Real-time precision delivery on Amazon Web Services
	Business context and requirements
	Implementation architecture
	Data pipeline 
	Model development pipeline 
	CI/CD pipeline 
	Deployment and serving 
	Monitoring and logging 
	Feedback loop 

	Challenges and solutions
	Real-time processing at scale 
	Complex route optimization


	Summary

	Chapter 11: Exploring Next-Gen MLOps
	Introducing LLMs: New concepts and key differences from MLOps
	Components of LLM solution development
	Development process
	Readiness for deployment

	Challenges and risks in LLMOps
	Responsible AI
	Azure RAI
	Deployment
	Alerting and monitoring

	Benefits of and trends in LLM developments
	Emerging trends transforming LLMOps

	Practical example: Implementing LLMOps with Azure AI
	Background
	Solution development 
	Prompt engineering and model customization 
	RAI implementation 
	Deployment and monitoring
	Results and impact
	Future developments 

	Summary
	Stay Sharp in Cloud and DevOps – Join 44,000+ Subscribers of CloudPro

	PacktPage
	Other Books You May Enjoy
	Index



